Operator algebras associated with polymorphisms
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 23-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A short survey of the problems and developments in the theory of operator algebras associated with semi-group dynamical systems is presented. The main part is an exposition of results concerning the algebras generated by multivalued transformations (polymorphisms).
@article{ZNSL_2005_326_a2,
     author = {V. A. Arzumanian},
     title = {Operator algebras associated with polymorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--27},
     year = {2005},
     volume = {326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a2/}
}
TY  - JOUR
AU  - V. A. Arzumanian
TI  - Operator algebras associated with polymorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 23
EP  - 27
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a2/
LA  - en
ID  - ZNSL_2005_326_a2
ER  - 
%0 Journal Article
%A V. A. Arzumanian
%T Operator algebras associated with polymorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 23-27
%V 326
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a2/
%G en
%F ZNSL_2005_326_a2
V. A. Arzumanian. Operator algebras associated with polymorphisms. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 23-27. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a2/

[1] V. A. Arzumanyan, A. Vershik, “Factor-representations of the crossed product of a commutative $C^*$-algebra with its endomorphism semigroup”, Sov. Math. Dokl., 19 (1978), 48–52 | MR | Zbl

[2] V. Arzumanian, A. Vershik, “Star-algebras associated with endomorphisms”, Operator algebras and group representations, Proc. Int. Conf., Pitman Press, Boston, 1984, 17–27 | MR

[3] V. Arzumanian, “Operator algebras associated to nonsingular endomorphisms of a Lebesgue space”, Sov. J. Cont. Math. Anal., 21:6 (1986), 81–102 | MR

[4] V. Arzumanian, J. Renault, “Examples of pseudogroups and their C*-algebras”, Operator algebras and quantum field theory, Int. Press, Cambridge, Mass., 1997, 93–104 | MR | Zbl

[5] J. Cuntz, “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[6] V. Deaconu, “Groupoids associated with endomorphisms”, Trans. Amer. Math. Soc., 347:5 (1995), 1779–1786 | DOI | MR | Zbl

[7] R. Exel, “A new look at the crossed-product of a $C^*$-algebra by an endomorphism”, Ergodic Theory Dynam. Systems, 23:6 (2003), 1733–1750 | DOI | MR | Zbl

[8] R. Exel, A. Vershik,, $C^*$-algebras of irreversible systems, arXiv: /math/0203185

[9] J. Feldman, C. Moore, “Ergodic equivalence relations, cohomologies, von Neumann algebras”, Trans. Amer. Math. Soc., 234:2 (1977), 289–359 | DOI | MR

[10] W. Krieger, “On non-singular transformations of a measure space”, Z. Wahr. Verw. Geb., 11 (1969), 83–119 | DOI | MR | Zbl

[11] A. Kumjian, “On localizations and simple $C^*$-algebras”, Pacific J. Math., 112 (1984), 141–192 | MR | Zbl

[12] J. Renault, A groupoid approach to $C^*$-algebras, Lecture Notes in Mathematics, 793, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | Zbl

[13] A. Vershik, “Nonmeasurable decompositions, orbit theory, algebras of operators”, Sov. Math. Dokl., 12 (1971), 1218–1222 | MR | Zbl

[14] A. Vershik, “Multivalued mappings with invariant measure (polymorphisms) and Markov operators”, J. Sov. Math., 23 (1983), 2243–2266 | DOI | Zbl