Formality of the complements of subspace arrangements with geometric lattices
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 235-247
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that, for an arrangement of subspaces in a complex vector
space with geometric intersection lattice, the complement of the
arrangement is formal. We prove that the Morgan rational model for
such an arrangement complement is formal as a differential graded
algebra.
@article{ZNSL_2005_326_a12,
author = {E. M. Feichtner and S. A. Yuzvinskii},
title = {Formality of the complements of subspace arrangements with geometric lattices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {235--247},
publisher = {mathdoc},
volume = {326},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a12/}
}
TY - JOUR AU - E. M. Feichtner AU - S. A. Yuzvinskii TI - Formality of the complements of subspace arrangements with geometric lattices JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 235 EP - 247 VL - 326 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a12/ LA - en ID - ZNSL_2005_326_a12 ER -
E. M. Feichtner; S. A. Yuzvinskii. Formality of the complements of subspace arrangements with geometric lattices. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 235-247. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a12/