@article{ZNSL_2005_326_a11,
author = {V. A. Ustimenko},
title = {On linguistic dynamical systems, families of graphs of large girth, and},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {214--234},
year = {2005},
volume = {326},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a11/}
}
V. A. Ustimenko. On linguistic dynamical systems, families of graphs of large girth, and. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 214-234. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a11/
[1] F. Bien, “Constructions of telephone networks by group representations”, Notices Amer. Mah. Soc., 36 (1989), 5–22 | MR | Zbl
[2] N. Biggs, Algebraic Graph Theory, 2nd ed, University Press, Cambridge, 1993 | MR
[3] N. L. Biggs, “Graphs with large girth”, Ars Combinatoria, 25C (1988), 73–80 | MR | Zbl
[4] N. L. Biggs, A. G. Boshier, “Note on the girth of Ramanujan graphs”, Journal of Combinatorial Theory, Series B, 49 (1990), 190–194 | DOI | MR | Zbl
[5] N. L. Biggs, M. J. Hoare, “The sextet construction for cubic graphs”, Combinatorica, 3 (1983), 153–165 | DOI | MR | Zbl
[6] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978 | MR | Zbl
[7] B. Bollobás, Random Graphs, Academic Press, London, 1985 | MR | Zbl
[8] J. A. Bondy, M. Simonovits, “Cycles of even length in graphs”, J. Combinatorial Theory (B), 16 (1974), 97–105 | DOI | MR | Zbl
[9] A. Brouwer, A. Cohen, A. Neumaier, Distance-regular Graphs, Springer, Berlin, 1989 | MR
[10] P. Erdös, H. Sachs, “Regulare Graphen gegebener Taillenweite mit minimaler Krotenzahl”, Wiss. Z. Univ. Halle Martin Luther, Univ. Halle-Wittenberg, Math. Natur. Reine, 12 (1963), 251–257 | MR
[11] N. Koblitz, A Course in Number Theory and Cryptography, Second Edition, Springer, 1994 | MR
[12] N. Koblitz, Algebraic aspects of cryptography, Algorithms and Computations in Mathematics, 3, Springer, 1998 | MR
[13] W. Imrich, “Explicit construction of graphs without small cycles”, Combinatorica, 2 (1984), 53–59 | DOI | MR
[14] F. Lazebnik, V. A. Ustimenko, “New examples of graphs without small cycles and of large size”, Europ. J. of Combinatorics, 14 (1993), 445–460 | DOI | MR | Zbl
[15] F. Lazebnik, V. Ustimenko, “Explicit construction of graphs with an arbitrary large girth and of large size”, Discrete Appl. Math., 60 (1995), 275–284 | DOI | MR | Zbl
[16] F. Lazebnik, V. A. Ustimenko, A. J. Woldar, “A new series of dense graphs of high girth”, Bull (New Series) of AMS, 32:1 (1995), 73–79 | DOI | MR | Zbl
[17] F. Lazebnik, V. A. Ustimenko, A. J. Woldar, “New upper bounds on the order of cages”, Electronic J. Combin., 14 (1997), R13 | MR
[18] F. Lazebnik, V. A. Ustimenko, A. Woldar, “Polarities and $2k$-cycle-free graphs”, Discrete Mathematics, 197–198, 503–513 | MR | Zbl
[19] A. Lubotsky, R. Philips, P. Sarnak, “Ramanujan graphs”, J. Comb. Theory, 115:2 (1989), 62–89
[20] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Interscience, 1966
[21] G. A. Margulis, “Explicit construction of graphs without short cycles and low density codes”, Combinatorica, 2 (1982), 71–78 | DOI | MR | Zbl
[22] G. Margulis, “Explicit group-theoretical constructions of combinatorial schemes and their application to desighn of expanders and concentrators”, Probl. Peredachi Informatsii, 24:1, 51–60 | MR | Zbl
[23] M. Margulis, “Arithmetic groups and graphs without short cycles”, 6th Intern. Symp. on Information Theory, vol. 1, Tashkent, 1984, 123–125
[24] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, 227, Springer Verlag, New York, 1971 | MR | Zbl
[25] H. Sachs, “Regular graphs with given girth and restricted circuits”, J. London. Math. Soc., 38 (1963), 423–429 | DOI | MR | Zbl
[26] N. Sauer, “Extermaleigenschaften regularer Graphen gegebener Taillenweite, 1, 2”, Osterreich. Acad. Wiss. Math. Natur. Kl. S.-B 2, 176 (1967), 9–25, 27–43 | MR
[27] J. Seberry, J. Pieprzyk, Cryptography: An Introducion to Computer Security, Prentice Hall, 1989 | Zbl
[28] M. Simonovitz, “Extermal graph theory”, Selected Topics in Graph Theory, 2, eds. L. W. Beineke, R. J. Wilson, Academic Press, London, 1983, 161–200 | MR
[29] J. Spencer, The strange logic of random graphs, Springer Verlag, 2001 | MR
[30] W. Tutte, A family of cubical graphs, 43, Proc. Cambridge Philos. Soc., 1945 | MR
[31] V. A. Ustimenko, “Linear interpretation of Chevalley group flag geometries”, Ukrainian Math. J., 43:7,8 (1991), 1055–1060 | MR | Zbl
[32] V. A. Ustimenko, “Coordinatisation of regular tree and its quotients”, Voronoi's Impact on Modern Science, book 2, eds. P. Engel, H. Syta, 1998, 125–152 | Zbl
[33] V. A. Ustimenko, “On the varieties of parabolic subgroups, their generalizations and combinatorial applications”, Acta Applicandae Mathematicae, 52 (1998), 223–238 | DOI | MR | Zbl
[34] V. Ustimenko, “Graphs with special arcs and cryptography”, Acta Applicandae Mathematicae, 74:2 (2002), 117–153 | DOI | MR | Zbl
[35] V. Ustimenko, “CRYPTIM: Graphs as tools for symmetric encryption”, Applied algebra, algebraic algorithms and error-correcting codes. 14th international symposium, AAECC-14, Proceedings (Melbourne, Australia, November 26–30, 2001), Lecture Notes in Comput. Sci., 2227, Springer, New York, 2001, 278–286 | MR | Zbl
[36] V. Ustimenko, “Maximality of affine group and hidden graph cryptsystems”, Algebra and Discrete Mathematics, 2005, no. 1, 133–150 | MR | Zbl
[37] V. A. Ustimenko, D. Sharma, “CRYPTIM: system to encrypt text and image data”, Proceedings of International ICSC Congress on Intelligent Systems (2000, Wollongong), 2001 | Zbl
[38] V. Ustimenko, A. Touzene, “CRYPTALL:system to encrypt all types of data”, Notices of Kiev-Mohyla Academy, 23 (2004), 12–15 | Zbl
[39] Yu. Khmelevsky, V. A. Ustimenko, “Practical aspects of the Informational Systems reengineering”, The South Pacific Journal of Natural Science, 21 (2003); http://www.usp.ac.fj | Zbl
[40] H. Walther, “Eigenschaften von regularen Graphen gegebener Taillenweite und Minimaler Knotzenzahl”, Wiss. Z. Illmenau, 11 (1965), 167–168 | MR | Zbl
[41] H. Walther, “Uber regulare Graphen gegebener Taillenweite und minimaler Knotenzahl”, Wiss. Z. Techn Hochsch. Ilmenau, 11 (1965), 93–96 | MR | Zbl
[42] A. L. Weiss, “Girth of bipartite sextet graphs”, Combinatorika, 4:2–3 (1984), 241–245 | DOI | MR | Zbl