Representations of bornological algebras
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 9-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Bounded representations of bornological algebras are considered. The left and right bornological radicals in bornological algebras are introduced. It is shown that the left (right) bornological radical of a bornological algebra $A$ is equal to the intersection of all bornologically closed maximal regular left (respectively, right) ideals of $A$ and these both radicals of $A$ and the Jacobson radical of $A$ coincide when $A$ is an advertive and simplicial bornological algebra (in particular, a bornological $Q$-algebra).
@article{ZNSL_2005_326_a1,
     author = {M. A. Abel},
     title = {Representations of bornological algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--22},
     year = {2005},
     volume = {326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a1/}
}
TY  - JOUR
AU  - M. A. Abel
TI  - Representations of bornological algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 9
EP  - 22
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a1/
LA  - en
ID  - ZNSL_2005_326_a1
ER  - 
%0 Journal Article
%A M. A. Abel
%T Representations of bornological algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 9-22
%V 326
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a1/
%G en
%F ZNSL_2005_326_a1
M. A. Abel. Representations of bornological algebras. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 9-22. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a1/

[1] M. Akkar, “Sur le groupe des éléments inversibles d'une algèbre bornologique convexe. $Q$-algèbres bornologiques convexes”, C. R. Acad. Sci. Paris Sér. I Math., 300:2 (1985), 35–38 | MR | Zbl

[2] G. R. Allan, “A spectral theory for locally convex algebras”, Proc. London Math. Soc., 15 (1965), 399–421 | DOI | MR | Zbl

[3] A. Beddaa, Algèbres localement convexes advertiblement complètes et continuité automatique de morphismes, Thèse Docteur Sc. Math., Univ. Mohamed V de Rabat, Rabat, 1997

[4] F. F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973 | MR | Zbl

[5] A. El Kinani, “Advertible complètude et structure de $Q$-algèbre”, Rend. Circ. Mat. Palermo (2), 50:3 (2001), 427–442 | DOI | MR | Zbl

[6] S. Funakosi, “Induced bornological representations of bornological algebras”, Portugal Math., 35:1–2 (1976), 97–109 | MR | Zbl

[7] E. Hille, R. S. Phillips, Functional analysis and semigroups, Colloquium Publications, 31, AMS, Providence, RI, 1957 | MR | Zbl

[8] H. Hogbe-Nlend, Théories des bornologies et applications, Amer. Math. Soc. Colloq. Lect. Notes Math., 213, Springer-Verlag, Berlin, 1971 | MR | Zbl

[9] H. Hogbe-Nlend, “Les fondements da la théorie spectrale des algèbres bornologiques”, Bol. Soc. Brasil. Mat., 3:1 (1972), 19–56 | DOI | MR | Zbl

[10] H. Hogbe-Nlend, Bornologies and Functional analysis, North-Holland Math. Studies, 26, North-Holland Publ. Co., Amsterdam, 1977 | MR | Zbl

[11] M. Mieussens, “Fonctions entières dans les algèbres bornologiques”, C. R. Acad. Sci. Paris Sér. A–B, 277 (1973), A31–A34 | MR

[12] M. Oudadess, “A note on $m$-convex and pseudo-Banach structures”, Rend. Circ. Mat. Palermo (2), 41:1 (1992), 105–110 | DOI | MR | Zbl

[13] Ya. V. Radyno, Linear equations and bornology, Belaruss. Gos. Univ., Minsk, 1982 | MR | Zbl

[14] C. E. Rickart, General Theory of Banach Algebras, D. van Nostrad, Princeton, 1960 | MR | Zbl

[15] A. Tajmouati, A. Zinedine, “Éléments bornants et éléments singuliers permanent dans la classe des algèbres bornologiques”, Ital. J. Pure Appl. Math., 13 (2003), 31–42 | MR | Zbl

[16] L. Waelbroeck, “The holomorphic functional calculus and non-Banach algebras”, Algebras Analysis, Academic Press, London, 1975, 187–251 | MR