On compression of Bruhat--Tits buildings
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 163-170
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Consider an affine Bruhat–Tits building Latn of type $A_{n-1}$ and the complex distance in $\mathrm{Lat}_n$, i.e., the complete system of invariants of a pair of vertices of the building. An element of the Nazarov semigroup is a lattice in the duplicated $p$-adic space $\mathbb Q_p^n\oplus\mathbb Q_p^n$. We investigate the behavior of the complex distance with respect to the natural action of the Nazarov semigroup on the building. Bibliography: 18 titles.
			
            
            
            
          
        
      @article{ZNSL_2005_325_a9,
     author = {Yu. A. Neretin},
     title = {On compression of {Bruhat--Tits} buildings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {325},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a9/}
}
                      
                      
                    Yu. A. Neretin. On compression of Bruhat--Tits buildings. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 163-170. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a9/