Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 146-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an integrable system with $R$-matrix connected to the algebra $\mathrm{sl}_q(1\mid1)$. We construct the Hamiltonian of the system and find its spectrum by means of the algebraic Bethe Ansatz. The symmetry algebra of the chain is written out. The partition function of the model on the lattice with domain wall boundary conditions is calculated.
@article{ZNSL_2005_325_a8,
     author = {P. P. Kulish and P. D. Ryasichenko},
     title = {Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--162},
     year = {2005},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a8/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - P. D. Ryasichenko
TI  - Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 146
EP  - 162
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a8/
LA  - ru
ID  - ZNSL_2005_325_a8
ER  - 
%0 Journal Article
%A P. P. Kulish
%A P. D. Ryasichenko
%T Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 146-162
%V 325
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a8/
%G ru
%F ZNSL_2005_325_a8
P. P. Kulish; P. D. Ryasichenko. Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 146-162. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a8/

[1] C. N. Yang, Phys. Rev. Lett., 19:23 (1967), 1312–1314 | DOI | MR

[2] R. J. Baxter, Ann. Phys., 70:1 (1972), 193–228 ; Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, М., 1985 | DOI | MR | Zbl | MR

[3] L. D. Faddeev, Quantum Symmetries/Symmetries Quantiques, eds. A. Connes et al., North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl

[4] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[5] P. P. Kulish, E. K. Sklyanin, Lect. Notes Phys., 151, 1982, 61–159 | MR

[6] P. P. Kulish, E. K. Sklyanin, “O resheniyakh uravneniya Yanga–Bakstera”, Zap. nauchn. semin. LOMI, 95, 1980, 129–160 | MR

[7] E. Lieb, T. Schultz, D. Mattis, Ann. Phys., 16 (1961), 407–466 | DOI | MR | Zbl

[8] L. A. Takhtadzhyan, L. D. Faddeev, “Spektr i rasseyanie vozbuzhdenii v odnomernom izotropnom magnetike Geizenberga”, Zap. nauchn. semin. LOMI, 109, 1981, 134–178 | MR | Zbl

[9] M. Gaudin, La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl

[10] V. E. Korepin, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[11] N. A. Slavnov, TMF, 79:2 (1989), 232–240 | MR

[12] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, J. Phys. A: Math. Gen., 35 (2002), 5525–5541 | DOI | MR | Zbl