Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 146-162
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an integrable system with $R$-matrix connected to the algebra $\mathrm{sl}_q(1\mid1)$. We construct the Hamiltonian of the system and find its spectrum by means of the algebraic Bethe Ansatz. The symmetry algebra of the chain is written out. The partition function of the model on the lattice with domain wall
boundary conditions is calculated.
@article{ZNSL_2005_325_a8,
author = {P. P. Kulish and P. D. Ryasichenko},
title = {Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {146--162},
publisher = {mathdoc},
volume = {325},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a8/}
}
TY - JOUR
AU - P. P. Kulish
AU - P. D. Ryasichenko
TI - Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2005
SP - 146
EP - 162
VL - 325
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a8/
LA - ru
ID - ZNSL_2005_325_a8
ER -
P. P. Kulish; P. D. Ryasichenko. Spin chain connected to the quantum superalgebra $\mathrm{sl}_q(1\mid 1)$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 146-162. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a8/