The $\sigma$-algebra of pasts of a~random walk on the orbits of the Bernoulli action of the group~$Z^d$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 103-112
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the present paper, we study the $\sigma$-algebra of pasts $\Xi=\{\xi_n\}_n$ of a random walk $\mathcal T$ on the orbits of the Bernoulli action of the group $Z^d$. The proper scaling and the scaling entropy of this sequence of partitions is calculated. We show that the proper scaling entropy of the $\sigma$-algebra of pasts is $h(\Xi)=\frac1{2d}\log(2d)$.
			
            
            
            
          
        
      @article{ZNSL_2005_325_a5,
     author = {A. D. Gorbul'skii},
     title = {The $\sigma$-algebra of pasts of a~random walk on the orbits of the {Bernoulli} action of the group~$Z^d$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {325},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/}
}
                      
                      
                    TY - JOUR AU - A. D. Gorbul'skii TI - The $\sigma$-algebra of pasts of a~random walk on the orbits of the Bernoulli action of the group~$Z^d$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 103 EP - 112 VL - 325 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/ LA - ru ID - ZNSL_2005_325_a5 ER -
A. D. Gorbul'skii. The $\sigma$-algebra of pasts of a~random walk on the orbits of the Bernoulli action of the group~$Z^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 103-112. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/