The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 103-112
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, we study the $\sigma$-algebra of pasts $\Xi=\{\xi_n\}_n$ of a random walk $\mathcal T$ on the orbits of the Bernoulli action of the group $Z^d$. The proper scaling and the scaling entropy of this sequence of partitions is calculated. We show that the proper scaling entropy of the $\sigma$-algebra of pasts is $h(\Xi)=\frac1{2d}\log(2d)$.
@article{ZNSL_2005_325_a5,
author = {A. D. Gorbul'skii},
title = {The $\sigma$-algebra of pasts of a~random walk on the orbits of the {Bernoulli} action of the group~$Z^d$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {103--112},
year = {2005},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/}
}
TY - JOUR AU - A. D. Gorbul'skii TI - The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 103 EP - 112 VL - 325 UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/ LA - ru ID - ZNSL_2005_325_a5 ER -
A. D. Gorbul'skii. The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 103-112. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/
[1] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, Uspekhi mat. nauk, 55:4 (2000), 59–128 | MR | Zbl
[2] A. M. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl
[3] D. Heicklen, C. Hoffman, “$T,T^{-1}$ is not standard”, Ergodic Theory Dynam. Systems, 18 (1998), 875–878 | DOI | MR | Zbl
[4] D. Heicklen, C. Hoffman, D. Rudolph, “Entropy and dyadic equivalence of random walks on a random scenary”, Adv. Math., 156:2 (2000), 157–179 | DOI | MR | Zbl