The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 103-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, we study the $\sigma$-algebra of pasts $\Xi=\{\xi_n\}_n$ of a random walk $\mathcal T$ on the orbits of the Bernoulli action of the group $Z^d$. The proper scaling and the scaling entropy of this sequence of partitions is calculated. We show that the proper scaling entropy of the $\sigma$-algebra of pasts is $h(\Xi)=\frac1{2d}\log(2d)$.
@article{ZNSL_2005_325_a5,
     author = {A. D. Gorbul'skii},
     title = {The $\sigma$-algebra of pasts of a~random walk on the orbits of the {Bernoulli} action of the group~$Z^d$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--112},
     year = {2005},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/}
}
TY  - JOUR
AU  - A. D. Gorbul'skii
TI  - The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 103
EP  - 112
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/
LA  - ru
ID  - ZNSL_2005_325_a5
ER  - 
%0 Journal Article
%A A. D. Gorbul'skii
%T The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 103-112
%V 325
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/
%G ru
%F ZNSL_2005_325_a5
A. D. Gorbul'skii. The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 103-112. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a5/

[1] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, Uspekhi mat. nauk, 55:4 (2000), 59–128 | MR | Zbl

[2] A. M. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl

[3] D. Heicklen, C. Hoffman, “$T,T^{-1}$ is not standard”, Ergodic Theory Dynam. Systems, 18 (1998), 875–878 | DOI | MR | Zbl

[4] D. Heicklen, C. Hoffman, D. Rudolph, “Entropy and dyadic equivalence of random walks on a random scenary”, Adv. Math., 156:2 (2000), 157–179 | DOI | MR | Zbl