Exchangeable Gibbs partitions and Stirling triangles
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 83-102

Voir la notice de l'article provenant de la source Math-Net.Ru

For two collections of nonnegative and suitably normalised weights $W=(W_j)$ and $V=(V_{n,k})$, a probability distribution on the set of partitions of the set $\{1,\ldots,n\}$ is defined by assigning to a generic partition $\{A_j, j\leq k\}$ the probability $V_{n,k}\,W_{|A_1|}\cdots W_{|A_k|}$, where $|A_j|$ is the number of elements of $A_j$. We impose constraints on the weights by assuming that the resulting random partitions $\Pi_n$ of $[n]$ are consistent as $n$ varies, meaning that they define an exchangeable partition of the set of all natural numbers. This implies that the weights $W$ must be of a very special form depending on a single parameter $\alpha\in[-\infty,1]$. The case $\alpha=1$ is trivial, and for each value of $\alpha\ne 1$ the set of possible $V$-weights is an infinite-dimensional simplex. We identify the extreme points of the simplex by solving the boundary problem for a generalised Stirling triangle. In particular, we show that the boundary is discrete for $-\infty\le\alpha0$ and continuous for $0\le\alpha1$. For $\alpha\le 0$ the extremes correspond to the members of the Ewens–Pitman family of random partitions indexed by $(\alpha,\theta)$, while for $0\alpha1$ the extremes are obtained by conditioning an $(\alpha,\theta)$-partition on the asymptotics of the number of blocks of $\Pi_n$ as $n$ tends to infinity.
@article{ZNSL_2005_325_a4,
     author = {A. V. Gnedin and J. Pitman},
     title = {Exchangeable {Gibbs} partitions and {Stirling} triangles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--102},
     publisher = {mathdoc},
     volume = {325},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a4/}
}
TY  - JOUR
AU  - A. V. Gnedin
AU  - J. Pitman
TI  - Exchangeable Gibbs partitions and Stirling triangles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 83
EP  - 102
VL  - 325
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a4/
LA  - en
ID  - ZNSL_2005_325_a4
ER  - 
%0 Journal Article
%A A. V. Gnedin
%A J. Pitman
%T Exchangeable Gibbs partitions and Stirling triangles
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 83-102
%V 325
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a4/
%G en
%F ZNSL_2005_325_a4
A. V. Gnedin; J. Pitman. Exchangeable Gibbs partitions and Stirling triangles. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 83-102. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a4/