On the Fourier transform on the infinite symmetric group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 61-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a sketch of the Fourier theory on the infinite symmetric group ${\mathfrak S}_\infty$. As a dual space to ${\mathfrak S}_\infty$, we suggest the space (groupoid) of Young bitableaux $\mathcal B$. The Fourier transform of a function on the infinite symmetric group is a martingale with respect to the so-called full Plancherel measure on the groupoid of bitableaux. The Plancherel formula determines an isometry of the space $l^2({\mathfrak S}_\infty,m)$ of square integrable functions on the infinite symmetric group with the counting measure and the space $L^2({\mathcal B},\tilde\mu)$ of square integrable functions on the groupoid of bitableaux with the full Plancherel measure.
@article{ZNSL_2005_325_a3,
     author = {A. M. Vershik and N. V. Tsilevich},
     title = {On the {Fourier} transform on the infinite symmetric group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--82},
     publisher = {mathdoc},
     volume = {325},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. V. Tsilevich
TI  - On the Fourier transform on the infinite symmetric group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 61
EP  - 82
VL  - 325
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/
LA  - ru
ID  - ZNSL_2005_325_a3
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. V. Tsilevich
%T On the Fourier transform on the infinite symmetric group
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 61-82
%V 325
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/
%G ru
%F ZNSL_2005_325_a3
A. M. Vershik; N. V. Tsilevich. On the Fourier transform on the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 61-82. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/