On the Fourier transform on the infinite symmetric group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 61-82
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a sketch of the Fourier theory on the infinite symmetric group ${\mathfrak S}_\infty$. As a dual space to ${\mathfrak S}_\infty$, we suggest the space (groupoid) of Young bitableaux $\mathcal B$. The Fourier transform of a function on the infinite symmetric group is a martingale with respect to the so-called
full Plancherel measure on the groupoid of bitableaux. The Plancherel formula determines an isometry of the space $l^2({\mathfrak S}_\infty,m)$ of square integrable functions on the infinite symmetric group with the counting measure and the space $L^2({\mathcal B},\tilde\mu)$ of square integrable functions on the groupoid of bitableaux with the full Plancherel measure.
@article{ZNSL_2005_325_a3,
author = {A. M. Vershik and N. V. Tsilevich},
title = {On the {Fourier} transform on the infinite symmetric group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--82},
publisher = {mathdoc},
volume = {325},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/}
}
A. M. Vershik; N. V. Tsilevich. On the Fourier transform on the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 61-82. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/