@article{ZNSL_2005_325_a3,
author = {A. M. Vershik and N. V. Tsilevich},
title = {On the {Fourier} transform on the infinite symmetric group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--82},
year = {2005},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/}
}
A. M. Vershik; N. V. Tsilevich. On the Fourier transform on the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 61-82. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a3/
[1] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR
[2] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, Mass., 1981 | MR
[3] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz, T. 1, Nauka, M., 1974; Т. 2, Мир
[4] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation.”, C. R. Acad. Sci. Paris Ser. I. Math., 316:8 (1993), 773–778 | MR | Zbl
[5] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl
[6] I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Clarendon Press, Oxford, 1995 | MR | Zbl
[7] A. Yu. Okunkov, “Teorema Toma i predstavleniya beskonechnoi bisimmetricheskoi gruppy”, Funkts. anal. i pril., 28:2 (1994), 31–40 | MR
[8] G. I. Olshanskii, Unitarnye predstavleniya $(G, K)$-par svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$, Algebra i analiz, 1, no. 4, 1989 | MR
[9] G. K. Pedersen, $C^*$-algebras and Their Automorphism Groups, Academic Press, London–New York, 1979 | MR | Zbl
[10] J. Renault, A Groupoid Approach to C$^*$-Algebras, Lect. Notes in Math., 793, Springer-Verlag, Berlin–Heildelberg–New York, 1980 | MR | Zbl
[11] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999 | MR
[12] A. Vershik, “Gelfand–Tsetlin algebras, expectations, inverse limits, Fourier analysis”, Unity of Mathematics. Proc. of the conference dedicated to I. M. Gelfand, Birkhäuser, 2005 (to appear) | MR
[13] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. anal. i pril., 15:4 (1981), 15–27 | MR | Zbl
[14] A. M. Vershik, S. V. Kerov, “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of K$_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, eds. A. M. Vershik, D. P. Zhelobenko, Gordon and Breach Sci. Publ., 1990, 39–118 | MR
[15] A. M. Vershik, A. Yu. Okunkov, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp, II”, Zap. nauchn. semin. POMI, 307, 2004, 57–98 | MR
[16] A. M. Vershik, A. Yu. Okunkov, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp, II”, Prilozhenie k knige U. Fulton, Tablitsy Yunga, MTsNMO, M., 2004