@article{ZNSL_2005_325_a2,
author = {S. A. Vakulenko and D. Yu. Grigor'ev},
title = {Evolution in random environment and structural instability},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {28--60},
year = {2005},
volume = {325},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a2/}
}
S. A. Vakulenko; D. Yu. Grigor'ev. Evolution in random environment and structural instability. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 28-60. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a2/
[1] R. Thom, Stabilité Structurelle et Morphogénèse, Benjamin, New York, 1972 | MR
[2] R. Gilmore, Catastrophe Theory for Scientists and Engineers, John Wiley and Sons, New York, 1981 | MR | Zbl
[3] D. V. Anosov (ed.), Dynamical Systems with Hyperbolic Behaviour, Encyclopedia of Mathematical Sciences, 66, Springer-Verlag, Berlin–Heidelberg–New York, 1995 | MR | Zbl
[4] S. Smale, Mathematics of Time, Springer, New York, 1980 | MR | Zbl
[5] D. Ruelle, Elements of Differentiable Dynamics and Bifurcation Theory, Acad. Press, Boston, 1989 | MR
[6] T. Brocker, K. Lander, Diffential Germs and Catastrophes, Cambridge Univ. Press, 1975 | MR
[7] M. Begon, J. L. Harper, C. R. Townsend, Ecology, Vol. 2, Blackwell Scientific Publications, Oxford–London–Edinburgh, 1986
[8] R. May, “Will a large complex system be stable”, Nature, 238 (1972), 413–414 | DOI
[9] C. Lobry, “Une propriete generique des couples de champs de vecteurs”, Chechosl. Math. J., 22(97) (1972), 230–237 | MR | Zbl
[10] M. M. Hirsch, Differential Topology, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR
[11] Yu. Ilyashenko, Weigu Li, Nonlocal Bifurcations, Amer. Math. Soc., 1999 | MR
[12] P. Erdös, A. Rényi, “On the evolution of random graphs”, Publ. Math. Inst. Hungarian Academy of Sciences, 5 (1960), 17–61 | MR | Zbl
[13] V. F. Kolchin, Random Graphs, FizMatLit, 2004
[14] R. Albert, A. L. Barabási, “Statistical mechanics of complex networks”, Rev. Modern Physics, 74 (2002), 47–97 | DOI | MR | Zbl
[15] W. Horsthemke, R. Lefever, Noise-Induced Transitions, Springer-Verlag, Berlin, 1984 | MR
[16] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. USA, 79 (1982), 2554–2558 | DOI | MR
[17] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4nd edition, Garland Publishing, Inc., New York, 2002
[18] M. Ridley, Evolution, 2nd edition, Blackwell Scientific Publications, Oxford, 1996
[19] A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry, 2nd edition, Worth, New York, 1993
[20] L. Glass, S. Kauffman, “The logical analysis of continuous, nonlinear biochemical control networks”, J. Theor. Biology, 34 (1973), 103–129 | DOI
[21] D. Thieffry, R. Thomas, “Dynamical behavior of biological regulatory networks. II: Immunity control in bacteriophage lambda”, Bull. Math. Biology, 57 (1995), 277–295
[22] R. Edwards, T. H. Siegelmann, K. Aziza, L. Glass, “Symbolic dynamics and computation in model gene networks”, Chaos, 11 (2001), 160–169 | DOI
[23] P. Smolen, D. Baxter, J. H. Byrne, “Mathematical modelling of gene networks”, Review Neuron, 25 (2000), 247–292
[24] E. Mjolness, D. H. Sharp, J. Reinitz, “A connectionist model of development”, J. Theor. Biol., 152 (1991), 429–453 | DOI
[25] J. Reinitz, D. H. Sharp, “Mechanism of formation of eve stripes”, Mechanisms of Development, 49 (1995), 133–158 | DOI
[26] I. Salazar-Ciudad, J. Garcia-Fernadez, R. V. Solé, “Gene networks capable of pattern formation: from induction to reaction-diffusion”, J. Theor. Biology, 205 (2000), 587–603 | DOI
[27] L. Mendoza, E. R. Alvarez-Buylla, “Dynamics of genetic regulatory networks for arabodopsis thaliana flower morphogenesis”, J. Theor. Biology, 193 (1998), 307–319 | DOI
[28] S. Karlin, A First Course in Stochastic Processes, Academic Press, New York–London, 1968 | MR | Zbl
[29] H. Jeong, B. Tombor, R. Albert, Z. N. Otvai, A. L. Barabási, “The large-scale organisation of metabolic networks”, Nature, 407 (2000), 651–654 | DOI
[30] H. Jeong, S. P. Mason, A. L. Barabási, Z. N. Otvai, “Lethality and centrality in protein networks”, Nature, 411 (2000), 41–42 | DOI
[31] L. H. Hartwell, J. J. Hopfield, S. Leibler, A. W. Murray, “From molecular to modular cell biology”, Nature, 402 (1999), C47–C52 | DOI
[32] M. Gromov, A. Carbone, Mathematical slices of molecular biology, Preprint IHES/M/01/03, 2001 | MR
[33] A. D. Ventsel, M. I. Freidlin, Random Perturbations of Dynamic Systems, Springer, New York, 1984 | MR
[34] I. I. Gikhman, A. B. Skorokhod, Introduction to Theory of Random Processes, Nauka, Moscow, 1977 | MR
[35] S. Basu, R. Pollack, M. F. Roy, Algorithms in Real Algebraic Geometry, Springer, Berlin–Heidelberg–New York, 2003 | MR
[36] D. Grigoriev, “Complexity of deciding Tarski algebra”, J. Symbol. Comput., 5 (1988), 65–108 | DOI | MR
[37] J. E. Savage, Models of Computations. Exploring the Power of Computing, Addison-Wesley, 1997
[38] R. A. Fisher, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1930 | MR
[39] Ju. M. Sviregev, V. P. Pasekov, Foundations of Theoretical Genetics, Nauka, Moscow, 1982
[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT Press, New York, 1990 | MR | Zbl
[41] D. Grigoriev, “Application of separability and independence notions for proving lower bounds of circuit complexity”, J. Soviet Math., 14:5 (1980), 1450–1456 | DOI
[42] J. D. Murray, Mathematical Biology, Springer, New York–Berlin–Heidelberg, 1993 | MR
[43] M. H. Garey, D. S. Jonnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979 | MR | Zbl
[44] C. H. Papadimitriou, K. Steglitz, Combinatorial Optimization, Algorithms, and Complexity, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1982 | MR | Zbl
[45] S. Vakulenko, D. Grigoriev, “Complexity of gene circuits, Pfaffian functions and the morphogenesis problem”, C. R. Acad. Sci, Ser. I, 337 (2003), 721–724 | MR | Zbl