Evolution in random environment and structural instability
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 28-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider stability and evolution of complex biological systems, in particular, genetic networks. We focus our attention on supporting of homeostasis in these systems with respect to fluctuations of an external medium (the problem is posed by M. Gromov and A. Carbone [32]). Using a measure of stochastic stability, we show that a generic system with fixed parameters is unstable, i.e., the probability to support homeostasis converges to zero as time $T\to\infty$. However, if we consider a population of unstable systems which are capable to evolve (change their parameters), then such a population can be stable as $T\to\infty$. This means that the probability to survive may be nonzero as $T\to\infty$. Evolution algorithms that provide stability of populations are not trivial. We show that the mathematical results on evolution algorithms are consistent with experimental data on genetic evolution.
@article{ZNSL_2005_325_a2,
     author = {S. A. Vakulenko and D. Yu. Grigor'ev},
     title = {Evolution in random environment and structural instability},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--60},
     year = {2005},
     volume = {325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a2/}
}
TY  - JOUR
AU  - S. A. Vakulenko
AU  - D. Yu. Grigor'ev
TI  - Evolution in random environment and structural instability
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 28
EP  - 60
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a2/
LA  - en
ID  - ZNSL_2005_325_a2
ER  - 
%0 Journal Article
%A S. A. Vakulenko
%A D. Yu. Grigor'ev
%T Evolution in random environment and structural instability
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 28-60
%V 325
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a2/
%G en
%F ZNSL_2005_325_a2
S. A. Vakulenko; D. Yu. Grigor'ev. Evolution in random environment and structural instability. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 28-60. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a2/

[1] R. Thom, Stabilité Structurelle et Morphogénèse, Benjamin, New York, 1972 | MR

[2] R. Gilmore, Catastrophe Theory for Scientists and Engineers, John Wiley and Sons, New York, 1981 | MR | Zbl

[3] D. V. Anosov (ed.), Dynamical Systems with Hyperbolic Behaviour, Encyclopedia of Mathematical Sciences, 66, Springer-Verlag, Berlin–Heidelberg–New York, 1995 | MR | Zbl

[4] S. Smale, Mathematics of Time, Springer, New York, 1980 | MR | Zbl

[5] D. Ruelle, Elements of Differentiable Dynamics and Bifurcation Theory, Acad. Press, Boston, 1989 | MR

[6] T. Brocker, K. Lander, Diffential Germs and Catastrophes, Cambridge Univ. Press, 1975 | MR

[7] M. Begon, J. L. Harper, C. R. Townsend, Ecology, Vol. 2, Blackwell Scientific Publications, Oxford–London–Edinburgh, 1986

[8] R. May, “Will a large complex system be stable”, Nature, 238 (1972), 413–414 | DOI

[9] C. Lobry, “Une propriete generique des couples de champs de vecteurs”, Chechosl. Math. J., 22(97) (1972), 230–237 | MR | Zbl

[10] M. M. Hirsch, Differential Topology, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR

[11] Yu. Ilyashenko, Weigu Li, Nonlocal Bifurcations, Amer. Math. Soc., 1999 | MR

[12] P. Erdös, A. Rényi, “On the evolution of random graphs”, Publ. Math. Inst. Hungarian Academy of Sciences, 5 (1960), 17–61 | MR | Zbl

[13] V. F. Kolchin, Random Graphs, FizMatLit, 2004

[14] R. Albert, A. L. Barabási, “Statistical mechanics of complex networks”, Rev. Modern Physics, 74 (2002), 47–97 | DOI | MR | Zbl

[15] W. Horsthemke, R. Lefever, Noise-Induced Transitions, Springer-Verlag, Berlin, 1984 | MR

[16] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. USA, 79 (1982), 2554–2558 | DOI | MR

[17] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4nd edition, Garland Publishing, Inc., New York, 2002

[18] M. Ridley, Evolution, 2nd edition, Blackwell Scientific Publications, Oxford, 1996

[19] A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry, 2nd edition, Worth, New York, 1993

[20] L. Glass, S. Kauffman, “The logical analysis of continuous, nonlinear biochemical control networks”, J. Theor. Biology, 34 (1973), 103–129 | DOI

[21] D. Thieffry, R. Thomas, “Dynamical behavior of biological regulatory networks. II: Immunity control in bacteriophage lambda”, Bull. Math. Biology, 57 (1995), 277–295

[22] R. Edwards, T. H. Siegelmann, K. Aziza, L. Glass, “Symbolic dynamics and computation in model gene networks”, Chaos, 11 (2001), 160–169 | DOI

[23] P. Smolen, D. Baxter, J. H. Byrne, “Mathematical modelling of gene networks”, Review Neuron, 25 (2000), 247–292

[24] E. Mjolness, D. H. Sharp, J. Reinitz, “A connectionist model of development”, J. Theor. Biol., 152 (1991), 429–453 | DOI

[25] J. Reinitz, D. H. Sharp, “Mechanism of formation of eve stripes”, Mechanisms of Development, 49 (1995), 133–158 | DOI

[26] I. Salazar-Ciudad, J. Garcia-Fernadez, R. V. Solé, “Gene networks capable of pattern formation: from induction to reaction-diffusion”, J. Theor. Biology, 205 (2000), 587–603 | DOI

[27] L. Mendoza, E. R. Alvarez-Buylla, “Dynamics of genetic regulatory networks for arabodopsis thaliana flower morphogenesis”, J. Theor. Biology, 193 (1998), 307–319 | DOI

[28] S. Karlin, A First Course in Stochastic Processes, Academic Press, New York–London, 1968 | MR | Zbl

[29] H. Jeong, B. Tombor, R. Albert, Z. N. Otvai, A. L. Barabási, “The large-scale organisation of metabolic networks”, Nature, 407 (2000), 651–654 | DOI

[30] H. Jeong, S. P. Mason, A. L. Barabási, Z. N. Otvai, “Lethality and centrality in protein networks”, Nature, 411 (2000), 41–42 | DOI

[31] L. H. Hartwell, J. J. Hopfield, S. Leibler, A. W. Murray, “From molecular to modular cell biology”, Nature, 402 (1999), C47–C52 | DOI

[32] M. Gromov, A. Carbone, Mathematical slices of molecular biology, Preprint IHES/M/01/03, 2001 | MR

[33] A. D. Ventsel, M. I. Freidlin, Random Perturbations of Dynamic Systems, Springer, New York, 1984 | MR

[34] I. I. Gikhman, A. B. Skorokhod, Introduction to Theory of Random Processes, Nauka, Moscow, 1977 | MR

[35] S. Basu, R. Pollack, M. F. Roy, Algorithms in Real Algebraic Geometry, Springer, Berlin–Heidelberg–New York, 2003 | MR

[36] D. Grigoriev, “Complexity of deciding Tarski algebra”, J. Symbol. Comput., 5 (1988), 65–108 | DOI | MR

[37] J. E. Savage, Models of Computations. Exploring the Power of Computing, Addison-Wesley, 1997

[38] R. A. Fisher, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1930 | MR

[39] Ju. M. Sviregev, V. P. Pasekov, Foundations of Theoretical Genetics, Nauka, Moscow, 1982

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT Press, New York, 1990 | MR | Zbl

[41] D. Grigoriev, “Application of separability and independence notions for proving lower bounds of circuit complexity”, J. Soviet Math., 14:5 (1980), 1450–1456 | DOI

[42] J. D. Murray, Mathematical Biology, Springer, New York–Berlin–Heidelberg, 1993 | MR

[43] M. H. Garey, D. S. Jonnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979 | MR | Zbl

[44] C. H. Papadimitriou, K. Steglitz, Combinatorial Optimization, Algorithms, and Complexity, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1982 | MR | Zbl

[45] S. Vakulenko, D. Grigoriev, “Complexity of gene circuits, Pfaffian functions and the morphogenesis problem”, C. R. Acad. Sci, Ser. I, 337 (2003), 721–724 | MR | Zbl