Representation theory and the branching graph for the family of Turaev algebras
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 171-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the family of algebras $\{H_q^{1,n}\}_{n=1}^\infty$, where $H_q^{1,n}$ is obtained by changing the first generator in the group algebra of the symmetric group $S_{n+1}$. We describe the irreducible representations of these algebras and construct the branching graph of the family $\{H_q^{1,n}\}_{n=1}^\infty$. Bibliography: 6 titles.
@article{ZNSL_2005_325_a10,
     author = {P. P. Nikitin},
     title = {Representation theory and the branching graph for the family of {Turaev} algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {171--180},
     year = {2005},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a10/}
}
TY  - JOUR
AU  - P. P. Nikitin
TI  - Representation theory and the branching graph for the family of Turaev algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 171
EP  - 180
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a10/
LA  - ru
ID  - ZNSL_2005_325_a10
ER  - 
%0 Journal Article
%A P. P. Nikitin
%T Representation theory and the branching graph for the family of Turaev algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 171-180
%V 325
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a10/
%G ru
%F ZNSL_2005_325_a10
P. P. Nikitin. Representation theory and the branching graph for the family of Turaev algebras. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 171-180. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a10/

[1] A. Yu. Okunkov, A. M. Vershik, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp”, Zap. nauchn. sem. POMI, 307, 2004, 57–98 | MR

[2] I. Rainer, Ch. Kertis, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[3] V. G. Turaev, “Operatornye invarianty matrits i $r$-matritsy”, Izv. AN SSSR, seriya matemat., 53:5 (1989), 1073–1107 | MR | Zbl

[4] G. James, Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and Its Applications, 16, Addison-Wesley, 1981 | MR | Zbl

[5] A. Vershik, S. Kerov, G. Olshansky, “Harmonic analysis on the infinite symmetric group”, Inv. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[6] H. Wensl, “On the structure of brauer's centralizer algebras”, Annals of Mathematics, 128:1 (1988), 173–193 | DOI | MR