$XX0$ Heisenberg chain and random walks
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 13-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The time-dependent correlation functions of the $XX0$ Heisenberg chain over the ferromagnetic vacuum are considered as the generating functions of random walks on a one-dimensional lattice with different boundary conditions. The long-time asymptotic behaviour of these functions is studied. Bibliography: 18 titles.
@article{ZNSL_2005_325_a1,
     author = {N. M. Bogolyubov},
     title = {$XX0$ {Heisenberg} chain and random walks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--27},
     year = {2005},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a1/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
TI  - $XX0$ Heisenberg chain and random walks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 13
EP  - 27
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a1/
LA  - ru
ID  - ZNSL_2005_325_a1
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%T $XX0$ Heisenberg chain and random walks
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 13-27
%V 325
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a1/
%G ru
%F ZNSL_2005_325_a1
N. M. Bogolyubov. $XX0$ Heisenberg chain and random walks. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 13-27. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a1/

[1] M. E. Fisher, “Walks, walls, wetting and melting”, J. Statist. Phys., 34 (1984), 667–729 | DOI | MR

[2] P. J. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A, 23 (1990), 1259–1273 | DOI | MR | Zbl

[3] P. J. Forrester, Random walks and random permutations, arXiv: /math/9907037 | MR

[4] T. Nagao, P. J. Forrester, “Vicious random walkers and a discretization of Gaussian random matrix ensembles”, Nuclear Phys. B, 620 (2002), 551–565 | DOI | MR | Zbl

[5] A. J. Guttmann, A. L. Owczarek, X. G. Viennot, “Vicious walkers and Young tableaux. I: Without walls”, J. Phys. A, 31 (1998), 8123–8135 | DOI | MR | Zbl

[6] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II: With a wall”, J. Phys. A, 33 (2000), 8835–8866 | DOI | MR | Zbl

[7] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. III: Between two walls”, J. Statist. Phys., 110 (2003), 1069–1086 | DOI | MR | Zbl

[8] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI

[9] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, Vicious walk with a wall, noncolliding meanders, chiral and Bogoliubov–de Gennes random matrices, arXiv: /cond-mat/0303573

[10] D. Huse, M. Fisher, “Commensurate melting, domain walls, and dislocations”, Phys. Rev. B, 29 (1984), 239–270 | DOI | MR

[11] E. Domany, W. Kinzel, “Equivalence of cellular automata to Ising models and directed percolation”, Phys. Rev. Lett., 53 (1984), 311–314 | DOI | MR | Zbl

[12] P. Bak, C. Tang, K. Wiesenfeld, “Self-organized criticality, an explanation of $1/f$ noise”, Phys. Rev. A, 38 (1988), 364–374 | DOI | MR

[13] J. W. Essam, A. J. Guttmann, “Vicious walkers and directed polymer networks in general dimensions”, Phys. Rev. E, 52 (1995), 5849–5862 | DOI | MR

[14] K. Johansson, “Shape fluctuations and random matrices”, Comm. Math. Phys., 209 (2000), 437–476 | DOI | MR | Zbl

[15] M. Prähofer, H. Spohn, “Universal distributions for Growth Processes in 1+1 dimensions and random matrices”, Phys. Rev. Lett., 84 (2000), 4882–4885 | DOI

[16] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[17] M. L. Mehta, Random Matrices, Academic, New-York, 1991 | MR | Zbl

[18] C. Jordan, Calculus of Finite Differences, Chelsea Publ. Comp., New York, 1965 | MR | Zbl