Renormalization of the quantum equation of motion for Yang–Mills fields in background formalism
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this work is to compare renormalizations of the infinite parts of the Effective Action and Quantum Equation of Motion in gauge fields theory with $SU(N)$ as a structural group in the One-Loop Approach and to make sure that they do not coincide. To this end, we use the Background Formalism, in which a gauge field is decomposed into the sum of a classical (background) and a quantum field: $A=B+gQ$. The appearance of an additional factor, which provides the recovery of the equality of renormalizations of Equations and Action, is explained with the help of comparison with results of the standard renormalization theory of Yang–Mills fields.
@article{ZNSL_2005_325_a0,
     author = {A. A. Bagaev},
     title = {Renormalization of the quantum equation of motion for {Yang{\textendash}Mills} fields in background formalism},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--12},
     year = {2005},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a0/}
}
TY  - JOUR
AU  - A. A. Bagaev
TI  - Renormalization of the quantum equation of motion for Yang–Mills fields in background formalism
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 5
EP  - 12
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a0/
LA  - ru
ID  - ZNSL_2005_325_a0
ER  - 
%0 Journal Article
%A A. A. Bagaev
%T Renormalization of the quantum equation of motion for Yang–Mills fields in background formalism
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 5-12
%V 325
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a0/
%G ru
%F ZNSL_2005_325_a0
A. A. Bagaev. Renormalization of the quantum equation of motion for Yang–Mills fields in background formalism. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a0/

[1] P. Ramon, Teoriya polya. Sovremennyi vvodnyi kurs, Mir, M., 1984 | MR

[2] L. D. Faddeev, V. N. Popov, Phys. Lett. B, 25 (1967), 30

[3] V. A. Fock, Sow. Phys., 12 (1937), 404; 7, 141

[4] J. Schwinger, Phys. Rev., 82 (1951), 664 | DOI | MR | Zbl

[5] B. S. De Witt, Relativity, Groups, and Topology, eds. B. S. De Witt, C. De Witt, Gordon and Breach, New York, 1965, 19

[6] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[7] V. A. Fok, Raboty po kvantovoi teorii polya, Izd. LGU, L., 1957