Combined method calculating the field generated by a point source in a surface wave guide
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 110-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The two-dimensional problem of propagation of waves, raised by a point source, in an interior layer wave guide is investigated. The Dirichlet condition is given on the bound of the wave guide. With help of cumbersome transformation the solution is represented as a sum of the geometro-optical waves, the normal waves and the residual. The sufficient conditions for the general amount of the detached normal and geometro-optical waves are obtained. The residual is expressed by the simple formula.
@article{ZNSL_2005_324_a5,
     author = {N. Ya. Kirpichnikova and V. B. Philippov and S. Yu. Fadeeva},
     title = {Combined method calculating the field generated by a~point source in a~surface wave guide},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--120},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a5/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
AU  - V. B. Philippov
AU  - S. Yu. Fadeeva
TI  - Combined method calculating the field generated by a point source in a surface wave guide
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 110
EP  - 120
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a5/
LA  - ru
ID  - ZNSL_2005_324_a5
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%A V. B. Philippov
%A S. Yu. Fadeeva
%T Combined method calculating the field generated by a point source in a surface wave guide
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 110-120
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a5/
%G ru
%F ZNSL_2005_324_a5
N. Ya. Kirpichnikova; V. B. Philippov; S. Yu. Fadeeva. Combined method calculating the field generated by a point source in a surface wave guide. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 110-120. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a5/

[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965

[2] M. A. Leontovich, V. A. Fok, “Reshenie zadachi o rasprostranenii elektromagnitnykh voln vdol poverkhnosti Zemli po metodu parabolicheskogo uravneniya”, Zhurn. eksperim. i teor. fiziki, 16:7 (1946), 557–573 | MR | Zbl

[3] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[4] V. S. Buldyrev, “Rasprostranenie voln vblizi izognutoi poverkhnosti neodnorodnogo tela”, Problemy matematicheskoi fiziki, Vyp. 2, Izd-vo LGU, L., 1967, 61–84 | MR

[5] I. A. Molotkov, “Difraktsiya na vypuklom konture s plavno menyayuschimsya radiusom krivizny i impedansom”, Problemy matem. fiziki, Vyp. 2, Izd-vo LGU, L., 1967, 124–132 | MR

[6] I. A. Molotkov, “Difraktsiya na gladkom vypuklom tsilindre pri suschestvovanii dvukh skorostei rasprostraneniya”, Vestnik Leningradskogo un-ta. Ser. fiz., khim., 2:10 (1967), 69–79

[7] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izd-vo Leningr. un-ta, L., 1974 | MR

[8] V. B. Filippov, “Difraktsiya na iskrivlennoi poluploskosti”, Zap. nauchn. semin. LOMI, 42, 1974, 244–249 | Zbl

[9] V. B. Filippov, “Korotkovolnovaya asimptotika toka v zadache difraktsii na ploskikh ekranakh”, Zap. nauchn. semin. LOMI, 51, 1975, 172–182 | MR | Zbl

[10] A. A. Dorodnitsyn, “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh uravnenii vtorogo poryadka”, Uspekhi matem. nauk AN SSSR, 7:6(52) (1952), 3–96 | Zbl