The behaviour of the Gaussian beam in the anisotropic medium with an interface
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 77-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a region which consists of two parts with anisotropic Riemannian metrics. The metric has a jump on the interface. The reflected and transmitted from the interface asymptotic solutions to the wave equation – Gaussian beams (quasiphotons) are constructed.
@article{ZNSL_2005_324_a4,
     author = {A. S. Kirpichnikova},
     title = {The behaviour of the {Gaussian} beam in the anisotropic medium with an interface},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--109},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a4/}
}
TY  - JOUR
AU  - A. S. Kirpichnikova
TI  - The behaviour of the Gaussian beam in the anisotropic medium with an interface
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 77
EP  - 109
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a4/
LA  - ru
ID  - ZNSL_2005_324_a4
ER  - 
%0 Journal Article
%A A. S. Kirpichnikova
%T The behaviour of the Gaussian beam in the anisotropic medium with an interface
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 77-109
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a4/
%G ru
%F ZNSL_2005_324_a4
A. S. Kirpichnikova. The behaviour of the Gaussian beam in the anisotropic medium with an interface. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 77-109. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a4/

[1] V. Babich, V. Ulin, “Kompleksnyi prostranstvenno-vremennoi metod i kvazifotony”, Zap. nauch. semin. POMI, 117, 1981, 5–12 | MR | Zbl

[2] V. Babich, V. Buldyrev, I. Molotkov, The space-time Ray Method Linear and Nonlinear waves, Leningrad Univ., Leningrad, 1985 | MR

[3] A. Kachalov, “Gaussovy puchki, uravneniya Gamiltona–Yakobi i finslerova geometriya”, Zap. nauch. semin. POMI, 297, 2003, 66–92 | MR | Zbl

[4] A. Kachalov, “Sistema koordinat pri opisanii kvazifotona”, Zap. nauch. semin. POMI, 140, 1984, 73–76 | MR | Zbl

[5] A. P. Katchalov, Ya. V. Kurylev, M. Lassas, “Inverse Boundary Spectral Problems”, CRC Monographs and Surveys in Pure and Applied Mathematics, 123, CRC Press, Boca Raton, FL, 2001 | MR | Zbl

[6] M. M. Popov, Ray Theory and Gaussian Beam Method for Geophysicists, Edufba, Salvator-Bahia, 2002

[7] J. Ralston, “Gaussian beams and propagation of singularities”, MAA Studies in Mathematics, 23, Math. Assoc. America, Washington, DC, 1982, 206–248 | MR