@article{ZNSL_2005_324_a4,
author = {A. S. Kirpichnikova},
title = {The behaviour of the {Gaussian} beam in the anisotropic medium with an interface},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--109},
year = {2005},
volume = {324},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a4/}
}
A. S. Kirpichnikova. The behaviour of the Gaussian beam in the anisotropic medium with an interface. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 77-109. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a4/
[1] V. Babich, V. Ulin, “Kompleksnyi prostranstvenno-vremennoi metod i kvazifotony”, Zap. nauch. semin. POMI, 117, 1981, 5–12 | MR | Zbl
[2] V. Babich, V. Buldyrev, I. Molotkov, The space-time Ray Method Linear and Nonlinear waves, Leningrad Univ., Leningrad, 1985 | MR
[3] A. Kachalov, “Gaussovy puchki, uravneniya Gamiltona–Yakobi i finslerova geometriya”, Zap. nauch. semin. POMI, 297, 2003, 66–92 | MR | Zbl
[4] A. Kachalov, “Sistema koordinat pri opisanii kvazifotona”, Zap. nauch. semin. POMI, 140, 1984, 73–76 | MR | Zbl
[5] A. P. Katchalov, Ya. V. Kurylev, M. Lassas, “Inverse Boundary Spectral Problems”, CRC Monographs and Surveys in Pure and Applied Mathematics, 123, CRC Press, Boca Raton, FL, 2001 | MR | Zbl
[6] M. M. Popov, Ray Theory and Gaussian Beam Method for Geophysicists, Edufba, Salvator-Bahia, 2002
[7] J. Ralston, “Gaussian beams and propagation of singularities”, MAA Studies in Mathematics, 23, Math. Assoc. America, Washington, DC, 1982, 206–248 | MR