Spectral function approach to the double wedges diffraction problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 61-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work the problem of diffraction by two wedges with ideal boundary conditions (Dirichlet or Neumann) is considered. Uniqueness is obtained in a general setting. Spectral functions approach turns out to be applicable under certain “narrowness” geometrical assumptions and leads to the existence of a solution.
@article{ZNSL_2005_324_a3,
     author = {V. V. Kamotskii},
     title = {Spectral function approach to the double wedges diffraction problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--76},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a3/}
}
TY  - JOUR
AU  - V. V. Kamotskii
TI  - Spectral function approach to the double wedges diffraction problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 61
EP  - 76
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a3/
LA  - ru
ID  - ZNSL_2005_324_a3
ER  - 
%0 Journal Article
%A V. V. Kamotskii
%T Spectral function approach to the double wedges diffraction problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 61-76
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a3/
%G ru
%F ZNSL_2005_324_a3
V. V. Kamotskii. Spectral function approach to the double wedges diffraction problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 61-76. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a3/

[1] J.-P. Croisille, G. Lebeau, Diffraction by an immersed elastic wedge, Lecture Notes in Mathematics, 1723, Springer, 1999 | MR | Zbl

[2] V. Kamotski, G. Lebeau, Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness, Preprint POMI 08/2003 ; Proc. R. Soc. Lond. A, 2005 (to appear) | MR

[3] V. V. Kamotskii, “O padenii ploskoi volny na uprugii klin pod kriticheskim uglom”, Algebra i Analiz, 15:3 (2003), 145–169 | MR | Zbl