An asymptotic solution to the Signorini problem about a beam laying on two rigid bases
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 43-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An asymptoic solution is constructed to the Signorini problem for a two-dimensional thin beam under a possible contact with two rigid profiles. For the position of points where the beam leaves the base, the asymptotic formula is derived by an analysis of the boundary layer phenomenon near these points.
@article{ZNSL_2005_324_a2,
     author = {O. V. Izotova and S. A. Nazarov},
     title = {An asymptotic solution to the {Signorini} problem about a~beam laying on two rigid bases},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--60},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a2/}
}
TY  - JOUR
AU  - O. V. Izotova
AU  - S. A. Nazarov
TI  - An asymptotic solution to the Signorini problem about a beam laying on two rigid bases
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 43
EP  - 60
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a2/
LA  - ru
ID  - ZNSL_2005_324_a2
ER  - 
%0 Journal Article
%A O. V. Izotova
%A S. A. Nazarov
%T An asymptotic solution to the Signorini problem about a beam laying on two rigid bases
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 43-60
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a2/
%G ru
%F ZNSL_2005_324_a2
O. V. Izotova; S. A. Nazarov. An asymptotic solution to the Signorini problem about a beam laying on two rigid bases. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 43-60. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a2/

[1] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl

[2] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[3] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Mir, M., 1980

[4] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[5] S. A. Nazarov, “Asimptoticheskoe reshenie variatsionnykh neravenstv dlya lineinogo operatora s malym parametrom pri starshikh proizvodnykh”, Izv. AN SSSR. Seriya matem., 54:4 (1990), 754–773 | MR | Zbl

[6] S. A. Nazarov, “Asimptoticheskoe reshenie variatsionnogo neravenstva, modeliruyuschego trenie”, Izv. AN SSSR. Seriya matem., 54:5 (1990), 990–1020 | MR | Zbl

[7] S. A. Nazarov, “Asimptotika reshenii zadachi Sinorini bez treniya ili s malym treniem”, Problemy matem. analiza, 12 (1992), 82–109, izd-vo SPbGU, SPb

[8] I. I. Argatov, S. A. Nazarov, “Asimptoticheskoe reshenie zadachi Sinorini s malymi uchastkami svobodnoi granitsy”, Sib. matem. zh., 35:2 (1994), 258–277 | MR | Zbl

[9] I. I. Argatov, S. A. Nazarov, “Asimptoticheskoe reshenie zadachi Sinorini s prepyatstviem na tonkom prodolgovatom mnozhestve”, Matem. sb., 187 (1996), 3–32 | MR | Zbl

[10] G. I. Barenblatt, “Ob usloviyakh konechnosti v mekhanike sploshnykh sred”, Prikladnaya matematika i mekhanika, 24:2 (1960), 316–322 | MR | Zbl

[11] R. Schumann, “Regularity for Signorini's problem in linear elasticity”, Manuscripta Mat., 63 (1989), 255–291 | DOI | MR | Zbl

[12] C. Eck, S. A. Nazarov, W. L. Wendland, “Asymptotic analysis for a mixed boundary-value contact problem”, Arch. Rational Mech. Anal., 156 (2001), 275–316 | DOI | MR | Zbl

[13] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991