On propagation of Scholte--Gogoladze surface waves along a fluid-solid interface of arbitrary shape
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 229-246

Voir la notice de l'article provenant de la source Math-Net.Ru

A high-frequency ray theory is presented for a type of small-amplitude waves (Scholte–Gogoladze waves) localised in a thin layer around an interface between elastic and fluid domains. The interface is assumed to be smooth, with the typical radius of curvature much larger than the excitation wavelength. The technique employed in the work is based on a boundary-layer version of the classical WKB expansion (see V. M. Babich and N. Ya. Kirpichnikova, The boundary-layer method in diffraction problems, Berlin; New York: Springer-Verlag, 1979).
@article{ZNSL_2005_324_a13,
     author = {K. D. Cherednichenko},
     title = {On propagation of {Scholte--Gogoladze} surface waves along a fluid-solid interface of arbitrary shape},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {229--246},
     publisher = {mathdoc},
     volume = {324},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/}
}
TY  - JOUR
AU  - K. D. Cherednichenko
TI  - On propagation of Scholte--Gogoladze surface waves along a fluid-solid interface of arbitrary shape
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 229
EP  - 246
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/
LA  - ru
ID  - ZNSL_2005_324_a13
ER  - 
%0 Journal Article
%A K. D. Cherednichenko
%T On propagation of Scholte--Gogoladze surface waves along a fluid-solid interface of arbitrary shape
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 229-246
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/
%G ru
%F ZNSL_2005_324_a13
K. D. Cherednichenko. On propagation of Scholte--Gogoladze surface waves along a fluid-solid interface of arbitrary shape. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 229-246. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/