On propagation of Scholte–Gogoladze surface waves along a fluid-solid interface of arbitrary shape
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 229-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A high-frequency ray theory is presented for a type of small-amplitude waves (Scholte–Gogoladze waves) localised in a thin layer around an interface between elastic and fluid domains. The interface is assumed to be smooth, with the typical radius of curvature much larger than the excitation wavelength. The technique employed in the work is based on a boundary-layer version of the classical WKB expansion (see V. M. Babich and N. Ya. Kirpichnikova, The boundary-layer method in diffraction problems, Berlin; New York: Springer-Verlag, 1979).
@article{ZNSL_2005_324_a13,
     author = {K. D. Cherednichenko},
     title = {On propagation of {Scholte{\textendash}Gogoladze} surface waves along a fluid-solid interface of arbitrary shape},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {229--246},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/}
}
TY  - JOUR
AU  - K. D. Cherednichenko
TI  - On propagation of Scholte–Gogoladze surface waves along a fluid-solid interface of arbitrary shape
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 229
EP  - 246
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/
LA  - ru
ID  - ZNSL_2005_324_a13
ER  - 
%0 Journal Article
%A K. D. Cherednichenko
%T On propagation of Scholte–Gogoladze surface waves along a fluid-solid interface of arbitrary shape
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 229-246
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/
%G ru
%F ZNSL_2005_324_a13
K. D. Cherednichenko. On propagation of Scholte–Gogoladze surface waves along a fluid-solid interface of arbitrary shape. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 229-246. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a13/

[1] V. M. Babich, “Rasprostranenie voln Releya vdol poverkhnosti uprugogo tela proizvolnoi formy”, DAN SSSR, 137 (1961), 1263–1266

[2] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[3] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod. (Lineinye i nelineinye volny), Izd. LGU, Leningrad, 1985 | MR | Zbl

[4] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izd. LGU, Leningrad, 1974 | MR

[5] V. M. Babich, N. Ya. Rusakova (Kirpichnikova), “O rasprostranenii voln Releya po poverkhnosti neodnorodnogo uprugogo tela proizvolnoi formy”, Zh. Vych. Matem. i Matem. Fiz., 2:4 (1962), 652–665 | MR | Zbl

[6] V. M. Babich, N. Ya. Kirpichnikova, “A new approach to the problem of Rayleigh wave propagation along the boundary of a non-homogeneous elastic body”, Wave Motion, 40 (2004), 209–223 | DOI | MR | Zbl

[7] M. V. Berry, “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London Ser. A, 392 (1984), 45–57 | DOI | MR | Zbl

[8] V. G. Gogoladze, “Volny Releya na granitse szhimaemoi zhidkoi sredy i tverdogo uprugogo poluprostranstva”, Trudy Seismologich. Inst. Akad. Nauk SSSR, 127, 1948, 27–32

[9] R. D. Gregory, “The propagation of Rayleigh waves over curved surfaces at high frequency”, Proc. Camb. Phil. Soc., 70 (1971), 103–121 | DOI | Zbl

[10] R. Grimshaw, “Propagation of surface waves at high frequences”, J. Inst. Maths Applics, 4 (1968), 174–193 | DOI | MR | Zbl

[11] J. B. Keller, F. C. Karal, “Surface wave excitation and propagation”, J. Appl. Phys., 31:6 (1960), 1039–1046 | DOI | MR

[12] J. B. Keller, F. C. Karal, “Geometrical theory of elastic surface wave excitation and propagation”, J. Acoustic Soc. Am., 36:1 (1964), 32–40 | DOI | MR

[13] P. V. Krauklis, “K otsenke intensivnosti poverkhnostnykh voln Releya i Stounli na neodnorodnoi trasse”, Zap. nauchn. semin. LOMI, 15, 1969, 115–121 | MR | Zbl

[14] V. D. Kupradze, S. L. Sobolev, “K voprosu o raspredelenii uprugikh voln na granitse razdela dvukh uprugikh sred s razlichnymi uprugimi svoistvami”, Trudy Seismologich. Inst. Akad. Nauk SSSR, 10, 1930, 1–23

[15] V. E. Nomofilov, “O rasprostranenii kvazistatsionarnykh voln Releya v neodnorodnoi anizotropnoi uprugoi srede”, Zap. nauchn. semin. LOMI, 89, 1979, 234–245 | MR | Zbl

[16] V. E. Nomofilov, “Kvazistatsionarnye volny Stounli”, Zap. nauchn. semin. LOMI, 104, 1981, 180–194 | MR | Zbl

[17] H. Ockendon, A. B. Tayler, Inviscid fluid flows, Springer-Verlag, 1983 | MR | Zbl

[18] Lord Rayleigh (John William Strutt), “On waves propagated along the plane surface of an elastic solid”, Proc. London Math. Soc., 17 (1887), 4–11

[19] J. G. Scholte, “On true and pseudo Rayleigh waves”, Nederl. Akad. Wetensch., Proc., 52 (1949), 652–653 | MR

[20] R. Stoneley, “Elastic waves at the surface of separation of two solids”, Proc. R. Soc. Lond. A, 106 (1925), 416–128