Temporary deformations of degrees of the wave operator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 213-228

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions at which the linear differential operators of the second order are equivalent to operators not containing of “friction” (first partial derivatives) are investigated. One can construct iso-Huygens deformations for degrees of the wave operator with time-dependent coefficients. The fundamental solutions of these deformations and conditions, at which the Huygens principle holds are found.
@article{ZNSL_2005_324_a12,
     author = {S. P. Khekalo},
     title = {Temporary deformations of degrees of the wave operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--228},
     publisher = {mathdoc},
     volume = {324},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a12/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - Temporary deformations of degrees of the wave operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 213
EP  - 228
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a12/
LA  - ru
ID  - ZNSL_2005_324_a12
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T Temporary deformations of degrees of the wave operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 213-228
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a12/
%G ru
%F ZNSL_2005_324_a12
S. P. Khekalo. Temporary deformations of degrees of the wave operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 213-228. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a12/