Determination of the parameters of the system of connected beams from dynamical boundary measurements
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 20-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the dynamical inverse problem for a special kind of a two velocity system. The system describes the vibrations of a composite beam formed by two connected beams and we recover the shearing stiffness coefficient. The vibrations of the beam are generated by the control applied to the end of the beam. The inverse data are the response operator and the dynamical measurement at the other end of the beam.
@article{ZNSL_2005_324_a1,
     author = {M. I. Belishev and S. A. Ivanov},
     title = {Determination of the parameters of the system of connected beams from dynamical boundary measurements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--42},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Ivanov
TI  - Determination of the parameters of the system of connected beams from dynamical boundary measurements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 20
EP  - 42
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a1/
LA  - ru
ID  - ZNSL_2005_324_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Ivanov
%T Determination of the parameters of the system of connected beams from dynamical boundary measurements
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 20-42
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a1/
%G ru
%F ZNSL_2005_324_a1
M. I. Belishev; S. A. Ivanov. Determination of the parameters of the system of connected beams from dynamical boundary measurements. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 20-42. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a1/

[1] R. P. Johnson, Composite structures of steel and concrete, Blackwell Scientific, Oxford, 1964

[2] M. I. Belishev, S. A. Ivanov, “Kharakterizatsiya dannykh dinamicheskoi obratnoi zadachi dlya dvuskorostnoi sistemy”, Zap. nauchn. semin. POMI, 259, 1999, 19–45 | MR | Zbl

[3] M. I. Belishev, S. A. Ivanov, “Edinstvennost v malom v dinamicheskoi obratnoi zadache dlya dvuskorostnoi sistemy”, Zap. nauchn. semin. POMI, 275, 2001, 41–54 | MR | Zbl

[4] M. Belishev, A. Blagoveshchenskiĭ, S. A. Ivanov, “Erratum to: The two-velocity dynamical system: boundary control of waves and inverse problems”, Wave Motion, 25:1 (1997), 83–107 | DOI | MR | Zbl

[5] A. Morassi, L. Roccetto, “A damage analysis of steel concrete composite beams via dynamic methods. Part II: Experimental results”, J. Vibrat. Contr., 9:5 (2003), 507–527 | DOI

[6] M. I. Belishev, A. S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, Izd. S.-Peterburg. univ., S.-Peterburg, 1999

[7] A. S. Blagoveshchenskii, Inverse Problems of Wave Processes, VSP, Utrecht, 2001

[8] M. M. Sondhi, B. Gopinath, “Determination of Vocal-Tract Shape from Impulse Response at the lips”, J. Acoust. Soc. Am., 49:6 (1971), 1867–1873 | DOI

[9] A. Morassi, G. Nakamura, M. Sini, An inverse problem for connected beams, Rukopis

[10] M. I. Belishev, A. V. Zurov, “Effekty, svyazannye s sovpadeniem skorostei v dvukhskorostnoi dinamicheskoi sisteme”, Zap. nauchn. semin. POMI, 264, 2000, 44–65 | MR | Zbl

[11] M. I. Belishev, S. A. Ivanov, “Granichnoe upravlenie i kanonicheskie realizatsii dvuskorostnoi dinamicheskoi sistemy”, Zap. nauchn. semin. POMI, 222, 1995, 18–44 | MR