On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 5-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Sigma$ be a surface, which is a boundary of a domain containing electromagnetic wave field. We assume, that Leontovich boundary conditions take place on $\Sigma$. Surface waves (an electromagnetic version of classical Rayleigh surface waves in elasiticy theory) can exists, only if the coefficient in the Leontovich boundary conditions is pure imaginary. The ray theory of surface electromagnetic waves is developed in this paper.
@article{ZNSL_2005_324_a0,
author = {V. M. Babich and A. V. Kuznetsov},
title = {On the propagation of surface electromagnetic waves, similar to {Rayleigh} waves in the case the {Leontovich} boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
publisher = {mathdoc},
volume = {324},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/}
}
TY - JOUR AU - V. M. Babich AU - A. V. Kuznetsov TI - On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 5 EP - 19 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/ LA - ru ID - ZNSL_2005_324_a0 ER -
%0 Journal Article %A V. M. Babich %A A. V. Kuznetsov %T On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions %J Zapiski Nauchnykh Seminarov POMI %D 2005 %P 5-19 %V 324 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/ %G ru %F ZNSL_2005_324_a0
V. M. Babich; A. V. Kuznetsov. On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/