On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Sigma$ be a surface, which is a boundary of a domain containing electromagnetic wave field. We assume, that Leontovich boundary conditions take place on $\Sigma$. Surface waves (an electromagnetic version of classical Rayleigh surface waves in elasiticy theory) can exists, only if the coefficient in the Leontovich boundary conditions is pure imaginary. The ray theory of surface electromagnetic waves is developed in this paper.
@article{ZNSL_2005_324_a0,
     author = {V. M. Babich and A. V. Kuznetsov},
     title = {On the propagation of surface electromagnetic waves, similar to {Rayleigh} waves in the case the {Leontovich} boundary conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--19},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/}
}
TY  - JOUR
AU  - V. M. Babich
AU  - A. V. Kuznetsov
TI  - On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 5
EP  - 19
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/
LA  - ru
ID  - ZNSL_2005_324_a0
ER  - 
%0 Journal Article
%A V. M. Babich
%A A. V. Kuznetsov
%T On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 5-19
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/
%G ru
%F ZNSL_2005_324_a0
V. M. Babich; A. V. Kuznetsov. On the propagation of surface electromagnetic waves, similar to Rayleigh waves in the case the Leontovich boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a0/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. VIII. Elektrodinamika sploshnykh sred, FML, M., 2001

[2] V. M. Babich, N. Ya. Kirpichnikova, “A new approach to the problem of the Rayleigh wave propagation along the boundary of a nonhomogeneous elastic body”, Wave Motion, 40 (2004), 209–223 | DOI | MR | Zbl

[3] V. E. Nomofilov, “Rasprostranenie kvazistatsionarnykh voln Releya v neodnorodnoi anizotropnoi uprugoi srede”, Zap. nauchn. semin. LOMI, 89, 1979, 234–245 | MR | Zbl

[4] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod, LGU, L., 1985 | MR

[5] M. A. Lyalinov, Difraktsiya akusticheskikh i elektromagnitnykh voln v klinovidnykh i konusovidnykh oblastyakh s granichnymi usloviyami impedansnogo tipa, Dissertatsiya, SPbGU, S-Pb., 2004

[6] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1986 | MR