Bounds and inequalities for the Perron root of a nonnegative matrix. III. Bounds dependent on simple paths and circuits
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 69-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents new upper and lower bounds for the Perron root of a nonnegative matrix in terms of the simple circuits of length not exceeding $k$ and the simple paths of length $k$, $1\le k\le n$, in the directed graph of the matrix. For each $k$, $1\le k\le n$, these bounds are intermediate between the circuit bounds and the path-dependent bounds suggested previously, and for $k=1$ and $k=n$ they reduce to the corresponding path-dependent bounds and the circuit bounds, respectively.
@article{ZNSL_2005_323_a7,
     author = {L. Yu. Kolotilina},
     title = {Bounds and inequalities for the {Perron} root of a nonnegative matrix. {III.~Bounds} dependent on simple paths and circuits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--93},
     year = {2005},
     volume = {323},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a7/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds and inequalities for the Perron root of a nonnegative matrix. III. Bounds dependent on simple paths and circuits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 69
EP  - 93
VL  - 323
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a7/
LA  - ru
ID  - ZNSL_2005_323_a7
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds and inequalities for the Perron root of a nonnegative matrix. III. Bounds dependent on simple paths and circuits
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 69-93
%V 323
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a7/
%G ru
%F ZNSL_2005_323_a7
L. Yu. Kolotilina. Bounds and inequalities for the Perron root of a nonnegative matrix. III. Bounds dependent on simple paths and circuits. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 69-93. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a7/

[1] Yu. A. Alpin, “Granitsy dlya perronovskogo kornya neotritsatelnoi matritsy, uchityvayuschie svoistva ee grafa”, Mat. zametki, 58 (1995), 635–637 | MR

[2] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl

[3] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, II”, Zap. nauchn. semin. POMI, 296, 2003, 60–88 | MR | Zbl

[4] L. Yu. Kolotilina, “Problema vyrozhdennosti/nevyrozhdennosti dlya matrits, udovletvoryayuschikh usloviyam diagonalnogo preobladaniya, formuliruemym v terminakh orientirovannykh grafov”, Zap. nauchn. semin. POMI, 309, 2004, 40–83 | MR | Zbl

[5] F. Harary, Graph Theory, Addison–Wesley Publ. Co, 1969 | MR | Zbl