Bounds for the singular values of a~matrix involving its sparsity pattern
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 57-68
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents new upper and lower bounds for the singular values of a rectangular matrix
explicitly involving the matrix sparsity pattern. These bounds are based on an
upper bound for the Perron root of a nonnegative matrix and on the sparsity-dependent
version of the Ostrowski–Brauer theorem on eigenvalue inclusion regions.
@article{ZNSL_2005_323_a6,
author = {L. Yu. Kolotilina},
title = {Bounds for the singular values of a~matrix involving its sparsity pattern},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--68},
publisher = {mathdoc},
volume = {323},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a6/}
}
L. Yu. Kolotilina. Bounds for the singular values of a~matrix involving its sparsity pattern. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 57-68. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a6/