@article{ZNSL_2005_323_a6,
author = {L. Yu. Kolotilina},
title = {Bounds for the singular values of a~matrix involving its sparsity pattern},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--68},
year = {2005},
volume = {323},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a6/}
}
L. Yu. Kolotilina. Bounds for the singular values of a matrix involving its sparsity pattern. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 57-68. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a6/
[1] Yu. A. Alpin, “Granitsy dlya perronovskogo kornya neotritsatelnoi matritsy, uchityvayuschie svoistva ee grafa”, Mat. zametki, 58 (1995), 635–637 | MR
[2] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl
[3] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, II”, Zap. nauchn. semin. POMI, 296, 2003, 60–88 | MR | Zbl
[4] L. Yu. Kolotilina, “Problema vyrozhdennosti/nevyrozhdennosti dlya matrits, udovletvoryayuschikh usloviyam diagonalnogo preobladaniya, formuliruemym v terminakh orientirovannykh grafov”, Zap. nauchn. semin. POMI, 309, 2004, 40–83 | MR | Zbl
[5] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991 | MR
[6] C. R. Johnson, T. Szulc, “Further lower bounds for the smallest singular value”, Linear Algebra Appl., 272 (1998), 169–179 | DOI | MR | Zbl
[7] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl