On the 2-norm distance from a normal matrix to the set of matrices with a multiple zero eigenvalue
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 50-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An elementary proof is given for a formula for the 2-norm distance from a normal matrix $A$ to the set of matrices with a multiple zero eigenvalue. Earlier, the authors obtained this formula as an implication of a nontrivial result due to A. N. Malyshev.
@article{ZNSL_2005_323_a5,
     author = {Kh. D. Ikramov and A. M. Nazari},
     title = {On the 2-norm distance from a~normal matrix to the set of matrices with a~multiple zero eigenvalue},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {50--56},
     year = {2005},
     volume = {323},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - A. M. Nazari
TI  - On the 2-norm distance from a normal matrix to the set of matrices with a multiple zero eigenvalue
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 50
EP  - 56
VL  - 323
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/
LA  - ru
ID  - ZNSL_2005_323_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A A. M. Nazari
%T On the 2-norm distance from a normal matrix to the set of matrices with a multiple zero eigenvalue
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 50-56
%V 323
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/
%G ru
%F ZNSL_2005_323_a5
Kh. D. Ikramov; A. M. Nazari. On the 2-norm distance from a normal matrix to the set of matrices with a multiple zero eigenvalue. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 50-56. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/

[1] A. N. Malyshev, “A formula for the $2$-norm distance from a matrix to the set of matrices with multiple eigenvalues”, Numer. Math., 83 (1999), 443–454 | DOI | MR | Zbl

[2] Kh. D. Ikramov, A. M. Nazari, “Ob odnom zamechatelnom sledstvii formuly Malysheva”, DAN, 385 (2002), 599–600 | MR

[3] Kh. D. Ikramov, “Yavnye formuly dlya matritsy s kratnym sobstvennym znacheniem nul, blizhaishei k zadannoi normalnoi matritse”, DAN, 398 (2004), 599–601 | MR

[4] C. Eckart, G. Young, “The approximation of one matrix by another of lower rank”, Psychometrica, 1 (1936), 211–218 | DOI | Zbl