On the 2-norm distance from a~normal matrix to the set of matrices with a~multiple zero eigenvalue
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 50-56
Voir la notice de l'article provenant de la source Math-Net.Ru
An elementary proof is given for a formula for the 2-norm distance from a normal matrix $A$ to the set of matrices with a multiple zero eigenvalue. Earlier, the authors obtained this formula as an implication of a nontrivial result due to A. N. Malyshev.
@article{ZNSL_2005_323_a5,
author = {Kh. D. Ikramov and A. M. Nazari},
title = {On the 2-norm distance from a~normal matrix to the set of matrices with a~multiple zero eigenvalue},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--56},
publisher = {mathdoc},
volume = {323},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/}
}
TY - JOUR AU - Kh. D. Ikramov AU - A. M. Nazari TI - On the 2-norm distance from a~normal matrix to the set of matrices with a~multiple zero eigenvalue JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 50 EP - 56 VL - 323 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/ LA - ru ID - ZNSL_2005_323_a5 ER -
%0 Journal Article %A Kh. D. Ikramov %A A. M. Nazari %T On the 2-norm distance from a~normal matrix to the set of matrices with a~multiple zero eigenvalue %J Zapiski Nauchnykh Seminarov POMI %D 2005 %P 50-56 %V 323 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/ %G ru %F ZNSL_2005_323_a5
Kh. D. Ikramov; A. M. Nazari. On the 2-norm distance from a~normal matrix to the set of matrices with a~multiple zero eigenvalue. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 50-56. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a5/