On the principal minors of a matrix with a multiple eigenvalue
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 47-49
Cet article a éte moissonné depuis la source Math-Net.Ru
The property of a Hermitian $n\times n$ matrix $A$ that all its principal minors of order $n-1$ vanish is shown to be a purely algebraic implication of the fact that the two lowest coefficients of its characteristic polynomial are zero. To prove this assertion, no information on the rank or the eigenvalues of $A$ is required.
@article{ZNSL_2005_323_a4,
author = {Kh. D. Ikramov},
title = {On the principal minors of a~matrix with a~multiple eigenvalue},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {47--49},
year = {2005},
volume = {323},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/}
}
Kh. D. Ikramov. On the principal minors of a matrix with a multiple eigenvalue. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 47-49. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/