On the principal minors of a~matrix with a~multiple eigenvalue
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 47-49

Voir la notice de l'article provenant de la source Math-Net.Ru

The property of a Hermitian $n\times n$ matrix $A$ that all its principal minors of order $n-1$ vanish is shown to be a purely algebraic implication of the fact that the two lowest coefficients of its characteristic polynomial are zero. To prove this assertion, no information on the rank or the eigenvalues of $A$ is required.
@article{ZNSL_2005_323_a4,
     author = {Kh. D. Ikramov},
     title = {On the principal minors of a~matrix with a~multiple eigenvalue},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--49},
     publisher = {mathdoc},
     volume = {323},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On the principal minors of a~matrix with a~multiple eigenvalue
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 47
EP  - 49
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/
LA  - ru
ID  - ZNSL_2005_323_a4
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On the principal minors of a~matrix with a~multiple eigenvalue
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 47-49
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/
%G ru
%F ZNSL_2005_323_a4
Kh. D. Ikramov. On the principal minors of a~matrix with a~multiple eigenvalue. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 47-49. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/