On the principal minors of a~matrix with a~multiple eigenvalue
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 47-49
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The property of a Hermitian $n\times n$ matrix $A$ that all its principal minors of order $n-1$ vanish is shown to be a purely algebraic implication of the fact that the two lowest coefficients of its characteristic polynomial are zero. To prove this assertion, no information on the rank or the eigenvalues of $A$ is required.
			
            
            
            
          
        
      @article{ZNSL_2005_323_a4,
     author = {Kh. D. Ikramov},
     title = {On the principal minors of a~matrix with a~multiple eigenvalue},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--49},
     publisher = {mathdoc},
     volume = {323},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/}
}
                      
                      
                    Kh. D. Ikramov. On the principal minors of a~matrix with a~multiple eigenvalue. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 47-49. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a4/