On the codimension of the variety of symmetric matrices with multiple eigenvalues
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 34-46
Voir la notice de l'article provenant de la source Math-Net.Ru
According to a result of Wigner and von Neumann, the dimension of the set $\mathcal M$ of $n\times n$ real symmetric matrices with multiple eigenvalues is equal to $N-2$, where $N=n(n+1)/2$. This value is determined by counting the number of free parameters in the spectral decomposition of a matrix. We show that the same dimension is obtained if $\mathcal M$ is interpreted as an algebraic variety.
@article{ZNSL_2005_323_a3,
author = {M. Dana and Kh. D. Ikramov},
title = {On the codimension of the variety of symmetric matrices with multiple eigenvalues},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--46},
publisher = {mathdoc},
volume = {323},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a3/}
}
TY - JOUR AU - M. Dana AU - Kh. D. Ikramov TI - On the codimension of the variety of symmetric matrices with multiple eigenvalues JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 34 EP - 46 VL - 323 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a3/ LA - ru ID - ZNSL_2005_323_a3 ER -
M. Dana; Kh. D. Ikramov. On the codimension of the variety of symmetric matrices with multiple eigenvalues. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 34-46. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a3/