On the codimension of the variety of symmetric matrices with multiple eigenvalues
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 34-46
Cet article a éte moissonné depuis la source Math-Net.Ru
According to a result of Wigner and von Neumann, the dimension of the set $\mathcal M$ of $n\times n$ real symmetric matrices with multiple eigenvalues is equal to $N-2$, where $N=n(n+1)/2$. This value is determined by counting the number of free parameters in the spectral decomposition of a matrix. We show that the same dimension is obtained if $\mathcal M$ is interpreted as an algebraic variety.
@article{ZNSL_2005_323_a3,
author = {M. Dana and Kh. D. Ikramov},
title = {On the codimension of the variety of symmetric matrices with multiple eigenvalues},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--46},
year = {2005},
volume = {323},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a3/}
}
M. Dana; Kh. D. Ikramov. On the codimension of the variety of symmetric matrices with multiple eigenvalues. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 34-46. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a3/
[1] P. Lax, Linear Algebra, Wiley, New York, 1997 | MR
[2] Kh. D. Ikramov, “O razmernosti mnogoobraziya simmetrichnykh matrits s kratnymi sobstvennymi znacheniyami”, Zh. vychisl. matem. matem. fiz., 44 (2004), 963–967 | MR | Zbl
[3] N. V. Ilyushechkin, “Diskriminant kharakteristicheskogo mnogochlena normalnoi matritsy”, Mat. zametki, 51 (1992), 16–23 | MR | Zbl
[4] B. N. Parlett, “The (matrix) discriminant as a determinant”, Linear Algebra Appl., 355 (2002), 85–101 | DOI | MR | Zbl