Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 215-222

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the boundary-value problem $$ -u''+p(t)u+q(t)u^n=f(t), \quad u(a)=u(b)=0, \quad n\ge 2, $$ has a unique nonnegative solution if the following conditions are fulfilled: \begin{gather*} 0\le q (t)[(b-t)(t-a)]^{\frac{n+1}{2}}\in L(a,b); \quad 0\le f(t)\sqrt{(b-t)(t-a)}\in L(a,b); \\ 1-\frac1{b-a}\int^{b}_{a}p^-(t)(t-a)(b-t)dt>0. \end{gather*} Bibliography: 2 titles.
@article{ZNSL_2005_323_a13,
     author = {M. N. Yakovlev},
     title = {Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {215--222},
     publisher = {mathdoc},
     volume = {323},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a13/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 215
EP  - 222
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a13/
LA  - ru
ID  - ZNSL_2005_323_a13
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 215-222
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a13/
%G ru
%F ZNSL_2005_323_a13
M. N. Yakovlev. Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 215-222. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a13/