@article{ZNSL_2005_323_a12,
author = {V. B. Khazanov},
title = {A resultant approach to computing vector characteristics of multiparameter polynomial matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {182--214},
year = {2005},
volume = {323},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a12/}
}
V. B. Khazanov. A resultant approach to computing vector characteristics of multiparameter polynomial matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 182-214. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a12/
[1] B. L. Van der Varden, Algebra, Nauka, M., 1976 | MR
[2] V. N. Kublanovskaya, “Nekotoryi podkhod k resheniyu mnogoparametricheskikh zadach”, Zap. nauchn. semin. POMI, 229, 1995, 191–246 | MR
[3] V. N. Kublanovskaya, “Metody i algoritmy resheniya spektralnykh zadach dlya polinomialnykh i ratsionalnykh matrits”, Zap. nauchn. semin. POMI, 238, 1997, 3–330
[4] V. N. Kublanovskaya, “Primenenie metoda rangovoi faktorizatsii k analizu spektralnykh kharakteristik mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI, 268, 2000, 115–144 | Zbl
[5] V. N. Kublanovskaya, T. V. Vaschenko, “Postroenie fundamentalnogo ryada reshenii puchka matrits”, Zap. nauchn. semin. POMI, 139, 1984, 74–93 | MR | Zbl
[6] V. N. Kublanovskaya, V. B. Khazanov, “Modifikatsii metoda $\Delta W$-$q$ razlozheniya mnogoparametricheskikh polinomialnykh matrits i ikh svoistva”, Zap. nauchn. semin. POMI, 309, 2004, 154–166
[7] V. N. Kublanovskaya, V. B. Khazanov, Chislennye metody resheniya parametricheskikh zadach algebry. Chast 1. Odnoparametricheskie zadachi, Nauka, SPb, 2004
[8] V. N. Kublanovskaya, V. B. Khazanov, V. A. Belyi, Spektralnye zadachi dlya puchkov matrits. Metody i algoritmy, III, Preprint LOMI R–4–88, L., 1988 | MR
[9] V. B. Khazanov, “O spektralnykh svoistvakh $\lambda$-matrits”, Zap. nauchn. semin. POMI, 111, 1981, 195–217
[10] V. B. Khazanov, “O spektralnykh svoistvakh mnogoparametricheskikh polinomialnykh matrits”, Zap. nauchn. semin. POMI, 229, 1995, 284–321 | MR
[11] V. B. Khazanov, “O sobstvennykh porozhdayuschikh vektorakh mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI, 248, 1998, 165–186 | MR | Zbl
[12] V. B. Khazanov, “O nekotorykh svoistvakh polinomialnykh bazisov podprostranstv nad polem ratsionalnykh funktsii mnogikh peremennykh”, Zap. nauchn. semin. POMI, 284, 2002, 177–191 | MR | Zbl
[13] V. B. Khazanov, “Metody resheniya nekotorykh parametricheskikh zadach algebry”, Zap. nauchn. semin. POMI, 323, 2005, 164–181 | MR | Zbl
[14] B. D. O. Anderson, E. I. Jury, “Generalized Bezoutian and Sylvester matrices in multivariable linear control”, IEEE Trans. Automat. Control, 21:3 (1976), 551–556 | DOI | MR | Zbl
[15] E. N. Antoniou, A. I. G. Vardulakis, S. Vologiannidis, “Numerical computations of minimal polynomial bases: A generalized resultant approach”, Linear Algebra Appl. (to appear) | MR
[16] G. D. Forney, “Minimal bases of rational vector spaces with applications to multivariable linear systems”, SIAM J. Control, 13:3 (1975), 493–520 | DOI | MR | Zbl
[17] R. R. Bitmead, S.-Y. Kung, B. D. O. Anderson, “Generalized greatest common matrices divisors via generalized Sylvester and Bezout matrices”, IEEE Trans. Automat. Control, 23:6 (1978), 1043–1047 | DOI | MR | Zbl
[18] H. H. Rosenbrock, “Generalized resultant”, Electron. Lett., 4 (1968), 250–251 | DOI
[19] W. A. Wolovich, Linear Multivariable Systems, Springer Verlag, New York, 1974 | MR | Zbl