A resultant approach to computing vector characteristics of multiparameter polynomial matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 182-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Known types of resultant matrices corresponding to one-parameter matrix polynomials are generalized to the multiparameter case. Based on the resultant approach suggested, methods for solving the following problems for multiparameter polynomial matrices are developed: computing a basis of the matrix range, computing a minimal basis of the right null-space, and constructing Jordan chains and semilattices of vectors associated with a multiple spectrum point. In solving these problems, the original polynomial matrix is not transformed. Methods for solving other parameter problems of algebra can be developed on the basis of the method for computing a minimal basis of the null-space of a polynomial matrix. Issues concerning the optimality of computing the null-spaces of sparse resultant matrices and numerical precision are not considered.
@article{ZNSL_2005_323_a12,
     author = {V. B. Khazanov},
     title = {A resultant approach to computing vector characteristics of multiparameter polynomial matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {182--214},
     year = {2005},
     volume = {323},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a12/}
}
TY  - JOUR
AU  - V. B. Khazanov
TI  - A resultant approach to computing vector characteristics of multiparameter polynomial matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 182
EP  - 214
VL  - 323
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a12/
LA  - ru
ID  - ZNSL_2005_323_a12
ER  - 
%0 Journal Article
%A V. B. Khazanov
%T A resultant approach to computing vector characteristics of multiparameter polynomial matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 182-214
%V 323
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a12/
%G ru
%F ZNSL_2005_323_a12
V. B. Khazanov. A resultant approach to computing vector characteristics of multiparameter polynomial matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 182-214. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a12/

[1] B. L. Van der Varden, Algebra, Nauka, M., 1976 | MR

[2] V. N. Kublanovskaya, “Nekotoryi podkhod k resheniyu mnogoparametricheskikh zadach”, Zap. nauchn. semin. POMI, 229, 1995, 191–246 | MR

[3] V. N. Kublanovskaya, “Metody i algoritmy resheniya spektralnykh zadach dlya polinomialnykh i ratsionalnykh matrits”, Zap. nauchn. semin. POMI, 238, 1997, 3–330

[4] V. N. Kublanovskaya, “Primenenie metoda rangovoi faktorizatsii k analizu spektralnykh kharakteristik mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI, 268, 2000, 115–144 | Zbl

[5] V. N. Kublanovskaya, T. V. Vaschenko, “Postroenie fundamentalnogo ryada reshenii puchka matrits”, Zap. nauchn. semin. POMI, 139, 1984, 74–93 | MR | Zbl

[6] V. N. Kublanovskaya, V. B. Khazanov, “Modifikatsii metoda $\Delta W$-$q$ razlozheniya mnogoparametricheskikh polinomialnykh matrits i ikh svoistva”, Zap. nauchn. semin. POMI, 309, 2004, 154–166

[7] V. N. Kublanovskaya, V. B. Khazanov, Chislennye metody resheniya parametricheskikh zadach algebry. Chast 1. Odnoparametricheskie zadachi, Nauka, SPb, 2004

[8] V. N. Kublanovskaya, V. B. Khazanov, V. A. Belyi, Spektralnye zadachi dlya puchkov matrits. Metody i algoritmy, III, Preprint LOMI R–4–88, L., 1988 | MR

[9] V. B. Khazanov, “O spektralnykh svoistvakh $\lambda$-matrits”, Zap. nauchn. semin. POMI, 111, 1981, 195–217

[10] V. B. Khazanov, “O spektralnykh svoistvakh mnogoparametricheskikh polinomialnykh matrits”, Zap. nauchn. semin. POMI, 229, 1995, 284–321 | MR

[11] V. B. Khazanov, “O sobstvennykh porozhdayuschikh vektorakh mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI, 248, 1998, 165–186 | MR | Zbl

[12] V. B. Khazanov, “O nekotorykh svoistvakh polinomialnykh bazisov podprostranstv nad polem ratsionalnykh funktsii mnogikh peremennykh”, Zap. nauchn. semin. POMI, 284, 2002, 177–191 | MR | Zbl

[13] V. B. Khazanov, “Metody resheniya nekotorykh parametricheskikh zadach algebry”, Zap. nauchn. semin. POMI, 323, 2005, 164–181 | MR | Zbl

[14] B. D. O. Anderson, E. I. Jury, “Generalized Bezoutian and Sylvester matrices in multivariable linear control”, IEEE Trans. Automat. Control, 21:3 (1976), 551–556 | DOI | MR | Zbl

[15] E. N. Antoniou, A. I. G. Vardulakis, S. Vologiannidis, “Numerical computations of minimal polynomial bases: A generalized resultant approach”, Linear Algebra Appl. (to appear) | MR

[16] G. D. Forney, “Minimal bases of rational vector spaces with applications to multivariable linear systems”, SIAM J. Control, 13:3 (1975), 493–520 | DOI | MR | Zbl

[17] R. R. Bitmead, S.-Y. Kung, B. D. O. Anderson, “Generalized greatest common matrices divisors via generalized Sylvester and Bezout matrices”, IEEE Trans. Automat. Control, 23:6 (1978), 1043–1047 | DOI | MR | Zbl

[18] H. H. Rosenbrock, “Generalized resultant”, Electron. Lett., 4 (1968), 250–251 | DOI

[19] W. A. Wolovich, Linear Multivariable Systems, Springer Verlag, New York, 1974 | MR | Zbl