The matrix equation $AX-YB=C$ and related problems
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 15-23
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result of the paper is a theorem, using which a new proof of Roth's theorem is obtained, a new solvability criterion for the matrix equation $AX-YB=C$ is proved, a formula for a particular solution of the latter is derived, and the least of the orders of nonsingular matrices containing a given rectangular matrix as a submatrix is determined.
@article{ZNSL_2005_323_a1,
author = {Yu. A. Alpin and S. N. Il'in},
title = {The matrix equation $AX-YB=C$ and related problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--23},
year = {2005},
volume = {323},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a1/}
}
Yu. A. Alpin; S. N. Il'in. The matrix equation $AX-YB=C$ and related problems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 15-23. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a1/
[1] W. E. Roth, “The equations $AX-YB=C$ and $AX-XB=C$ in matrices”, Proc. Amer. Math. Soc., 3 (1953), 392–396 | DOI | MR
[2] H. Flanders, H. K. Wimmer, “On matrix equations $AX-XB=C$ and $AX-YB=C$”, SIAM J. Appl. Math., 32 (1977), 707–710 | DOI | MR | Zbl
[3] V. V. Prasolov, Zadachi i teoremy lineinoi algebry, Nauka, Fizmatlit, M., 1996 | Zbl
[4] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[5] V. N. Malozemov, M. F. Monako, A. A. Petrov, “Formuly Frobeniusa, Shermana–Morrisona i blizkie voprosy”, Zh. vychisl. matem. matem. fiz., 42:10 (2002), 1459–1465 | MR | Zbl