The matrix equation $AX-YB=C$ and related problems
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 15-23
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of the paper is a theorem, using which a new proof of Roth's theorem  is obtained, a new solvability criterion for the matrix equation $AX-YB=C$ is proved, a formula for a particular solution of the latter is derived, and the least of the orders of nonsingular matrices containing a given rectangular matrix as a submatrix is determined.
			
            
            
            
          
        
      @article{ZNSL_2005_323_a1,
     author = {Yu. A. Alpin and S. N. Il'in},
     title = {The matrix equation $AX-YB=C$ and related problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {323},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a1/}
}
                      
                      
                    Yu. A. Alpin; S. N. Il'in. The matrix equation $AX-YB=C$ and related problems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 15-23. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a1/