Unitary similarity of algebras generated by pairs of orthoprojectors
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that the unitary similarity of two matrix algebras generated by pairs of orthoprojectors $\{P_1,Q_1\}$ and $\{P_2,Q_2\}$ can be verified by comparing the traces of $P_1$, $Q_1$, and $(P_1Q_1)^i$, $i=1,2,\dots,n$, with those of $P_2$, $Q_2$, and $(P_2Q_2)^i$. The conditions of the unitary similarity of two matrices with quadratic minimal polynomials presented in [A. George and Kh. D. Ikramov, Unitary similarity of matrices with quadratic minimal polynomials. – Linear Algebra Appl., 349 (2002), 11–16] are refined.
@article{ZNSL_2005_323_a0,
     author = {Yu. A. Alpin and Kh. D. Ikramov},
     title = {Unitary similarity of algebras generated by pairs of orthoprojectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     year = {2005},
     volume = {323},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a0/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - Kh. D. Ikramov
TI  - Unitary similarity of algebras generated by pairs of orthoprojectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 5
EP  - 14
VL  - 323
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a0/
LA  - ru
ID  - ZNSL_2005_323_a0
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A Kh. D. Ikramov
%T Unitary similarity of algebras generated by pairs of orthoprojectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 5-14
%V 323
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a0/
%G ru
%F ZNSL_2005_323_a0
Yu. A. Alpin; Kh. D. Ikramov. Unitary similarity of algebras generated by pairs of orthoprojectors. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVIII, Tome 323 (2005), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2005_323_a0/

[1] W. Specht, “Zur Theorie der Matrizen, II”, Jahresber. Deutsch. Math.-Verein, 50 (1940), 19–23 | MR

[2] C. A. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type, I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl

[3] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[4] C. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[5] Yu. A. Alpin, Kh. D. Ikramov, “Ob unitarnom podobii matrichnykh semeistv”, Matem. zametki, 74 (2003), 815–826 | MR

[6] F. T. Gaines, T. J. Laffey, H. M. Shapiro, “Pairs of matrices with quadratic minimal polynomials”, Linear Algebra Appl., 52–53 (1983), 289–292 | MR | Zbl

[7] A. George, Kh. D. Ikramov, “Unitary similarity of matrices with quadratic minimal polynomials”, Linear Algebra Appl., 349 (2002), 11–16 | DOI | MR | Zbl

[8] D. Z̆. Djoković, “Unitary similarity of projectors”, Aequationes Math., 42 (1991), 220–224 | DOI | MR | Zbl

[9] Kh. D. Ikramov, “Kanonicheskaya forma Shura unitarno kvazidiagonalizuemoi matritsy”, Zh. vychisl. matem. matem. fiz., 37 (1997), 1411–1415 | MR | Zbl

[10] A. Dzhordzh, Kh. D. Ikramov, “Zamechanie o kanonicheskoi forme pary ortoproektorov”, Zap. nauchn. semin. POMI, 309, 2003, 17–22 | MR