A limit theorem for the Hurwitz zeta-function with
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 125-134
Cet article a éte moissonné depuis la source Math-Net.Ru
A limit theorem in the sense of weak convergence of probability measures in the space of analytic functions for the Hurwitz zeta-function with algebraic irrational parameter is obtained.
@article{ZNSL_2005_322_a8,
author = {A. P. Laurincikas},
title = {A limit theorem for the {Hurwitz} zeta-function with},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--134},
year = {2005},
volume = {322},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a8/}
}
A. P. Laurincikas. A limit theorem for the Hurwitz zeta-function with. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 125-134. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a8/
[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1962 | MR
[2] J. W. Cassels, “Footnote to a note of Davenport and Heilbronn”, J. London Math. Soc., 36 (1961), 177–184 | DOI | MR | Zbl
[3] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1973 | MR | Zbl
[4] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer, Dordrecht, 2002 | MR | Zbl
[5] A. Laurinčikas, J. Steuding, A limit theorem on the complex plane for the Hurwitz zeta-function with algebraic irrational parameter, Preprint, 2004 | MR
[6] H. Cramér, M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967 | MR | Zbl