A limit theorem for the Hurwitz zeta-function with
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 125-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A limit theorem in the sense of weak convergence of probability measures in the space of analytic functions for the Hurwitz zeta-function with algebraic irrational parameter is obtained.
@article{ZNSL_2005_322_a8,
     author = {A. P. Laurincikas},
     title = {A limit theorem for the {Hurwitz} zeta-function with},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--134},
     year = {2005},
     volume = {322},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a8/}
}
TY  - JOUR
AU  - A. P. Laurincikas
TI  - A limit theorem for the Hurwitz zeta-function with
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 125
EP  - 134
VL  - 322
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a8/
LA  - en
ID  - ZNSL_2005_322_a8
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%T A limit theorem for the Hurwitz zeta-function with
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 125-134
%V 322
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a8/
%G en
%F ZNSL_2005_322_a8
A. P. Laurincikas. A limit theorem for the Hurwitz zeta-function with. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 125-134. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a8/

[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1962 | MR

[2] J. W. Cassels, “Footnote to a note of Davenport and Heilbronn”, J. London Math. Soc., 36 (1961), 177–184 | DOI | MR | Zbl

[3] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1973 | MR | Zbl

[4] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer, Dordrecht, 2002 | MR | Zbl

[5] A. Laurinčikas, J. Steuding, A limit theorem on the complex plane for the Hurwitz zeta-function with algebraic irrational parameter, Preprint, 2004 | MR

[6] H. Cramér, M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967 | MR | Zbl