@article{ZNSL_2005_322_a7,
author = {W. Zudilin},
title = {Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--124},
year = {2005},
volume = {322},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/}
}
W. Zudilin. Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 107-124. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/
[1] W. Van Assche, “Little $q$-Legendre polynomials and irrationality of certain Lambert series”, Ramanujan J., 5:3 (2001), 295–310 | DOI | MR | Zbl
[2] J.-P. Bézivin, “Indépendence linéaire des valeurs des solutions transcendantes de certaines équations fonctionelles”, Manuscripta Math., 61 (1988), 103–129 | DOI | MR | Zbl
[3] P. Borwein, “On the irrationality of $\sum(1/(q^n+r))$”, J. Number Theory, 37 (1991), 253–259 | DOI | MR | Zbl
[4] P. Bundschuh, K. Väänänen, “Arithmetical investigations of a certain infinite product”, Compositio Math., 91 (1994), 175–199 | MR | Zbl
[5] P. Bundschuh, K. Väänänen, “Linear independence of $q$-analogues of certain classical constants”, Results in Math., 2005 (to appear) | MR
[6] P. Bundschuh, W. Zudilin, “Rational approximations to a $q$-analogue of $\pi$ and some other $q$-series”, A 70th birthday conference in honour of Wolfgang M. Schmidt (November 2003, Vienna), Springer-Verlag, Berlin, 2005 (to appear) | MR
[7] P. Erdős, “On arithmetical properties of Lambert series”, J. Indiana Math. Soc., 12 (1948), 63–66 | MR | Zbl
[8] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[9] M. Hata, “Rational approximations to $\pi$ and some other numbers”, Acta Arith., 63:4 (1993), 335–349 | MR | Zbl
[10] T. Matalo-aho, K. Väänänen, W. Zudilin, “New irrationality measures for $q$-logarithms”, Math. Comput., 2004, submitted
[11] K. Postelmans, W. Van Assche, Irrationality of $\zeta_q(1)$ and $\zeta_q(2)$, Manuscript, 2004
[12] W. Zudilin, “On the irrationality measure for a $q$-analogue of $\zeta(2)$”, Mat. Sb., 193:8 (2002), 49–70 | MR | Zbl
[13] W. Zudilin, “Diophantine problems for $q$-zeta values”, Mat. Zametki, 72:6 (2002), 936–940 | MR | Zbl
[14] W. Zudilin, “Heine's basic transform and a permutation group for $q$-harmonic series”, Acta Arith., 111:2 (2004), 153–164 | DOI | MR | Zbl