Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 107-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct simultaneous rational approximations to the $q$-series $L_1(x_1;q)$ and $L_1(x_2;q)$, and,
if $x=x_1=x_2$, to the series $L_1(x;q)$ and $L_2(x;q)$, where
\begin{gather*}
L_1(x;q)=\sum_{n=1}^\infty\frac{(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{1-xq^n},
\\
L_2(x;q)=\sum_{n=1}^\infty\frac{n(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{(1-xq^n)^2}.
\end{gather*}
Applying the construction, we obtain quantitative linear independence over $\mathbb Q$ of the numbers in the following collections: $1$, $\zeta_q(1)=L_1(1;q)$, $\zeta_{q^2}(1)$, and $1$, $\zeta_q(1)$, $\zeta_q(2)=L_2(1;q)$ for $q=1/p$, $p\in\mathbb Z\setminus\{0,\pm1\}$.
			
            
            
            
          
        
      @article{ZNSL_2005_322_a7,
     author = {W. Zudilin},
     title = {Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--124},
     publisher = {mathdoc},
     volume = {322},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/}
}
                      
                      
                    TY - JOUR AU - W. Zudilin TI - Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 107 EP - 124 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/ LA - en ID - ZNSL_2005_322_a7 ER -
W. Zudilin. Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 107-124. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/