Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 107-124

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct simultaneous rational approximations to the $q$-series $L_1(x_1;q)$ and $L_1(x_2;q)$, and, if $x=x_1=x_2$, to the series $L_1(x;q)$ and $L_2(x;q)$, where \begin{gather*} L_1(x;q)=\sum_{n=1}^\infty\frac{(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{1-xq^n}, \\ L_2(x;q)=\sum_{n=1}^\infty\frac{n(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{(1-xq^n)^2}. \end{gather*} Applying the construction, we obtain quantitative linear independence over $\mathbb Q$ of the numbers in the following collections: $1$, $\zeta_q(1)=L_1(1;q)$, $\zeta_{q^2}(1)$, and $1$, $\zeta_q(1)$, $\zeta_q(2)=L_2(1;q)$ for $q=1/p$, $p\in\mathbb Z\setminus\{0,\pm1\}$.
@article{ZNSL_2005_322_a7,
     author = {W. Zudilin},
     title = {Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--124},
     publisher = {mathdoc},
     volume = {322},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/}
}
TY  - JOUR
AU  - W. Zudilin
TI  - Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 107
EP  - 124
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/
LA  - en
ID  - ZNSL_2005_322_a7
ER  - 
%0 Journal Article
%A W. Zudilin
%T Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 107-124
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/
%G en
%F ZNSL_2005_322_a7
W. Zudilin. Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 107-124. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a7/