On an exponential sum
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 63-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $p$ be a prime number, $n$ be a positive integer, and $f(x) = ax^k+bx$. We put $$ S(f,p^n)=\sum_{x=1}^{p^n}e\biggl(\frac{f(x)}{p^n}\biggr), $$ where $e(t)=\exp(2\pi it)$. This special exponential sum has been widely studied in connection with Waring's problem. We write $n$ in the form $n=Qk+r$, where $0\le r\le k-1$ and $Q\ge 0$. Let $\alpha=\operatorname{ord}_p(k)$, $\beta=\operatorname{ord}_p(k-1)$, and $\theta=\operatorname{ord}_p(b)$. We define $$ \mathcal Q=\begin{cases} \dfrac{\theta-\alpha}{k-1},&\text{если }\theta\ge\alpha, \\ 0,&\text{иначе}, \end{cases} $$ and $J=[\zeta]$. Moreover, we denote $V=\min(Q,J)$. Improving the preceding result, we establish the theorem. Theorem. Let $k\ge 2$ and $n\ge 2$. If $p>2$, then $$ |S(f,p^n)|\le\begin{cases} p^{\frac{1-V}2}p^{\frac n2}(b,p^n)^{\frac12},&\text{if }n\equiv 1\pmod k, \\ (k-1,p-1)p^{-\frac V2}p^{\frac{\min(\alpha,1)}2}p^{\min(\frac\beta2,\frac n2-1)}p^{\frac n2}(b,p^n)^{\frac12}, &\text{if }n\not\equiv 1\pmod k. \end{cases} $$ An example showing that this result is best possible is given. Bibliography: 15 titles.
@article{ZNSL_2005_322_a4,
     author = {P. Ding},
     title = {On an exponential sum},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--75},
     year = {2005},
     volume = {322},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a4/}
}
TY  - JOUR
AU  - P. Ding
TI  - On an exponential sum
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 63
EP  - 75
VL  - 322
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a4/
LA  - en
ID  - ZNSL_2005_322_a4
ER  - 
%0 Journal Article
%A P. Ding
%T On an exponential sum
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 63-75
%V 322
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a4/
%G en
%F ZNSL_2005_322_a4
P. Ding. On an exponential sum. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 63-75. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a4/

[1] J. H. H. Chalk, “On Hua's estimate for exponential sums”, Mathematika, 14 (1987), 115–123 | DOI | MR

[2] T. Cochrane, Z. Zheng, “Pure and mixed exponential sums”, Acta Arith., 91 (1999), 249–278 | MR | Zbl

[3] T. Cochrane, Z. Zheng, “Bounds for certain exponential sums”, Asian J. Math., 4 (2000), 757–774 | MR | Zbl

[4] R. Dabrowski, B. Fisher, “A stationary phase formula for exponential sums over $Z/Z$ and applications to GL(3)-kloosterman sums”, Acta Arith., 80 (1997), 1–48 | MR | Zbl

[5] H. Davenport, H. Heilbronn, “On an exponential sum”, Proc. London Math. Soc., 41 (1936), 449–453 | DOI

[6] P. Ding, “On a conjecture of Chalk”, J. Number Theory, 65 (1997), 116–129 | DOI | MR | Zbl

[7] L. K. Hua, “On exponential sums”, Sci. Record (Peking) (N.S.), 1 (1957), 1–4 | MR | Zbl

[8] W. K. A. Loh, “Hua's Lemma”, Bull. Australian Math. Soc., 50 (1994), 451–458 | DOI | MR | Zbl

[9] J. H. Loxton, R. A. Smith, “On Hua's estimate for exponential sums”, J. London Math. Soc., 26 (1982), 15–20 | DOI | MR | Zbl

[10] J. H. Loxton, R. C. Vaughan, “The estimate for complete exponential sums”, Canada Math. Bull., 28 (1985(4)), 442–454 | MR

[11] R. A. Smith, “Estimate for exponential sums”, Proc. Amer. Math. Soc., 79 (1980), 365–368 | DOI | MR | Zbl

[12] R. C. Vaughan, The Hardy–Littlewood method, 2nd ed., Cambridge Tracts in Math., 125, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[13] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl

[14] Y. Ye, “Hyper-Kloosterman sums and estimation of exponential sums of polynomials of higher degree”, Acta Arith., 86 (1998), 255–267 | MR | Zbl

[15] Y. Ye, “Estimation of exponential sums of polynomials of higher degree, II”, Acta Arith., 93 (2000), 221–235 | MR | Zbl