On an exponential sum
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 63-75
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $p$ be a prime number, $n$ be a positive integer, and $f(x) = ax^k+bx$. We put
$$
S(f,p^n)=\sum_{x=1}^{p^n}e\biggl(\frac{f(x)}{p^n}\biggr),
$$
where $e(t)=\exp(2\pi it)$. This special exponential sum has been widely studied in connection with Waring's problem. We write $n$ in the form $n=Qk+r$, where $0\le r\le k-1$  and $Q\ge 0$. Let $\alpha=\operatorname{ord}_p(k)$, $\beta=\operatorname{ord}_p(k-1)$, and $\theta=\operatorname{ord}_p(b)$. We define
$$
\mathcal Q=\begin{cases}
\dfrac{\theta-\alpha}{k-1},\text{если }\theta\ge\alpha,
\\
0,\text{иначе},
\end{cases}
$$
and $J=[\zeta]$. Moreover, we denote $V=\min(Q,J)$. Improving the preceding result, we establish the theorem.
Theorem. Let $k\ge 2$ and $n\ge 2$. If $p>2$, then
$$
|S(f,p^n)|\le\begin{cases} 
p^{\frac{1-V}2}p^{\frac n2}(b,p^n)^{\frac12},\text{if }n\equiv 1\pmod k,
\\
(k-1,p-1)p^{-\frac V2}p^{\frac{\min(\alpha,1)}2}p^{\min(\frac\beta2,\frac n2-1)}p^{\frac n2}(b,p^n)^{\frac12}, \text{if }n\not\equiv 1\pmod k. 
\end{cases}
$$
An example showing that this result is best possible is given. Bibliography: 15 titles.
			
            
            
            
          
        
      @article{ZNSL_2005_322_a4,
     author = {P. Ding},
     title = {On an exponential sum},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {322},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a4/}
}
                      
                      
                    P. Ding. On an exponential sum. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 63-75. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a4/