On the distribution of norms of prime ideals of the given class in arithmetic progressions
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 45-62
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal C$ be a class of ideals of the ring of algebraic numbers of the imaginary quadratic field. Let $l$ and $q$ be relatively prime integers, $1\le q\le\log^{A_1}x$, $A_1>1$. The asymptotic formula for the number $\pi_1(x,q,l,\mathcal C)$ of prime ideals belonging to the class $\mathcal C$ whose norms do not exceed $x$ and lie in an arithmetic progression got in this paper.
@article{ZNSL_2005_322_a3,
author = {S. A. Gritsenko},
title = {On the distribution of norms of prime ideals of the given class in arithmetic progressions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--62},
publisher = {mathdoc},
volume = {322},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/}
}
TY - JOUR AU - S. A. Gritsenko TI - On the distribution of norms of prime ideals of the given class in arithmetic progressions JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 45 EP - 62 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/ LA - ru ID - ZNSL_2005_322_a3 ER -
S. A. Gritsenko. On the distribution of norms of prime ideals of the given class in arithmetic progressions. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 45-62. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/