On the distribution of norms of prime ideals of the given class in arithmetic progressions
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 45-62
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathcal C$ be a class of ideals of the ring of algebraic numbers of the imaginary quadratic field. Let $l$ and $q$ be relatively prime integers, $1\le q\le\log^{A_1}x$, $A_1>1$. The asymptotic formula for the number $\pi_1(x,q,l,\mathcal C)$ of prime ideals belonging to the class $\mathcal C$ whose norms do not exceed $x$ and lie in an arithmetic progression got in this paper.
@article{ZNSL_2005_322_a3,
author = {S. A. Gritsenko},
title = {On the distribution of norms of prime ideals of the given class in arithmetic progressions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--62},
year = {2005},
volume = {322},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/}
}
S. A. Gritsenko. On the distribution of norms of prime ideals of the given class in arithmetic progressions. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 45-62. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/
[1] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR
[2] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[3] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Warszawa, 1974 | MR
[4] S. Leng, Ellipticheskie funktsii, Nauka, M., 1984 | MR
[5] S. A. Gritsenko, “O funktsionalnom uravnenii odnogo arifmeticheskogo ryada Dirikhle”, Chebyshevskii sbornik, 4:2 (2003), 53–67 | MR
[6] S. A. Gritsenko, “Otsenka lineinoi trigonometricheskoi summy po prostym chislam, predstavimym zadannoi kvadratichnoi formoi”, Chebyshevskii sbornik, 5:4(12) (2005), 82–87 | MR