On the distribution of norms of prime ideals of the given class in arithmetic progressions
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 45-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal C$ be a class of ideals of the ring of algebraic numbers of the imaginary quadratic field. Let $l$ and $q$ be relatively prime integers, $1\le q\le\log^{A_1}x$, $A_1>1$. The asymptotic formula for the number $\pi_1(x,q,l,\mathcal C)$ of prime ideals belonging to the class $\mathcal C$ whose norms do not exceed $x$ and lie in an arithmetic progression got in this paper.
@article{ZNSL_2005_322_a3,
     author = {S. A. Gritsenko},
     title = {On the distribution of norms of prime ideals of the given class in arithmetic progressions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--62},
     year = {2005},
     volume = {322},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/}
}
TY  - JOUR
AU  - S. A. Gritsenko
TI  - On the distribution of norms of prime ideals of the given class in arithmetic progressions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 45
EP  - 62
VL  - 322
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/
LA  - ru
ID  - ZNSL_2005_322_a3
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%T On the distribution of norms of prime ideals of the given class in arithmetic progressions
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 45-62
%V 322
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/
%G ru
%F ZNSL_2005_322_a3
S. A. Gritsenko. On the distribution of norms of prime ideals of the given class in arithmetic progressions. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 45-62. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a3/

[1] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[2] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[3] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Warszawa, 1974 | MR

[4] S. Leng, Ellipticheskie funktsii, Nauka, M., 1984 | MR

[5] S. A. Gritsenko, “O funktsionalnom uravnenii odnogo arifmeticheskogo ryada Dirikhle”, Chebyshevskii sbornik, 4:2 (2003), 53–67 | MR

[6] S. A. Gritsenko, “Otsenka lineinoi trigonometricheskoi summy po prostym chislam, predstavimym zadannoi kvadratichnoi formoi”, Chebyshevskii sbornik, 5:4(12) (2005), 82–87 | MR