A generalized square of the zeta function. The
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 17-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The spectral decomposition for the square of the classical Riemann zeta function $\zeta^2(s)$ is generalized to the case of the product of two such functions $\zeta(s_1)\cdot \zeta(s_2)$ of different arguments.
@article{ZNSL_2005_322_a2,
     author = {A. I. Vinogradov},
     title = {A generalized square of the zeta function. {The}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--44},
     year = {2005},
     volume = {322},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a2/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - A generalized square of the zeta function. The
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 17
EP  - 44
VL  - 322
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a2/
LA  - ru
ID  - ZNSL_2005_322_a2
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T A generalized square of the zeta function. The
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 17-44
%V 322
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a2/
%G ru
%F ZNSL_2005_322_a2
A. I. Vinogradov. A generalized square of the zeta function. The. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 17-44. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a2/

[1] A. I. Vinogradov, “Tochki pod giperboloi i problema kruga. Spektralnyi podkhod”, Zap. nauchn. semin. POMI, 289, 2002, 63–75 ; “Бинарные задачи. Спектральный подход, II, III”, Зап. научн. семин. ПОМИ, 251, 1998, 178–194 ; 195–215 | MR | Zbl | MR | Zbl | MR | Zbl

[2] E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford, 1951 ; Moskva, 1953 | MR

[3] R. M. Kaufman, “Ob ukorochennom uravnenii A. F. Lavrika”, Zap. nauchn. semin. POMI, 76, 1978, 124–158 | MR | Zbl

[4] V. Bykovsky, N. Kuznetsov, A. Vinogradov, “Generalized summation formula for ingomogenious convolution”, International Conference Automorphic Functions and Their Applications (Khabarovsk, 27 June–4 Jule 1988), 18–64

[5] H. Bateman, A. Erdelyi, Higher Trancendental Functions, V. I, II, 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953 | MR

[6] N. V. Kuznetsov, “Gipoteza Petersona dlya parabolicheskikh form vesa nul i gipoteza Linnika. Summy summ Kloostermana”, Mat. sb., 111(153):3 (1980), 334–383 | MR | Zbl