On the statistical properties of finite continued fractions
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 186-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is devoted to the statistical properties of continued fractions for the numbers $a/b$, for $a$ and $b$ in the sector $a,b\ge1$, $a^2+b^2\le R^2$. Main result is asymptotic formula with two meaning terms for the value $$ N_x(R)=\sum_{a^2+b^2\le R^2\atop a,b\in\mathbb{N}}s_x(a/b), $$ where $s_x(a/b)=|\{j\in\{1,\ldots,s\}:[0;t_j,\ldots,t_s]\le x\}|$ is Gaussian statistic for the fraction $a/b=[t_0;t_1,\ldots,t_s]$.
@article{ZNSL_2005_322_a12,
     author = {A. V. Ustinov},
     title = {On the statistical properties of finite continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--211},
     year = {2005},
     volume = {322},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - On the statistical properties of finite continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 186
EP  - 211
VL  - 322
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/
LA  - ru
ID  - ZNSL_2005_322_a12
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T On the statistical properties of finite continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 186-211
%V 322
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/
%G ru
%F ZNSL_2005_322_a12
A. V. Ustinov. On the statistical properties of finite continued fractions. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 186-211. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/

[1] M. O. Avdeeva, “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl

[2] M. O. Avdeeva, V. A. Bykovskii, Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, preprint, Dalnauka, Vladivostok, 2002

[3] I. V. Arnold, Teoriya chisel, Gosud. uchebno-pedagogicheskoe izd-vo Narkomprosa RSFS, 1939

[4] R. L. Grekhem, D. E. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998

[5] Zadachi Arnolda, Fazis, M., 2000 | MR

[6] D. E. Knut, Iskusstvo programmirovaniya. T. 2. Poluchislennye algoritmy, M., Sankt-Peterburg, Kiev, Vilyams, 2000

[7] J. D. Dixon, “The Number of Steps in the Euclidean Algorithm”, J. of Number Theory, 2 (1970), 414–422 | DOI | MR | Zbl

[8] G. H. Hardy, E. M. Write, An Introduction to the Number Theory, Clarendon Press, Oxford, 1979 | Zbl

[9] H. Heilbronn, “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, VEB, Berlin, 1968, 89–96 | MR

[10] D. E. Knuth, “Evaluation of Porter's Constant”, Comput. Math. Appl., 2 (1976), 137–139 | DOI | MR | Zbl

[11] L. Lewin, Polylogaritms and associated functions, Elsevier North Holland, New York, 1981 | MR

[12] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl