On the statistical properties of finite continued fractions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 186-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article is devoted to the statistical properties of continued fractions for the numbers $a/b$, for $a$ and $b$ in the sector $a,b\ge1$, $a^2+b^2\le R^2$. Main result is asymptotic formula with two meaning terms for the value 
$$
N_x(R)=\sum_{a^2+b^2\le R^2\atop a,b\in\mathbb{N}}s_x(a/b),
$$ 
where $s_x(a/b)=|\{j\in\{1,\ldots,s\}:[0;t_j,\ldots,t_s]\le x\}|$ is Gaussian statistic for the fraction $a/b=[t_0;t_1,\ldots,t_s]$.
			
            
            
            
          
        
      @article{ZNSL_2005_322_a12,
     author = {A. V. Ustinov},
     title = {On the statistical properties of finite continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--211},
     publisher = {mathdoc},
     volume = {322},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/}
}
                      
                      
                    A. V. Ustinov. On the statistical properties of finite continued fractions. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 186-211. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/