@article{ZNSL_2005_322_a12,
author = {A. V. Ustinov},
title = {On the statistical properties of finite continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {186--211},
year = {2005},
volume = {322},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/}
}
A. V. Ustinov. On the statistical properties of finite continued fractions. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 186-211. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/
[1] M. O. Avdeeva, “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl
[2] M. O. Avdeeva, V. A. Bykovskii, Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, preprint, Dalnauka, Vladivostok, 2002
[3] I. V. Arnold, Teoriya chisel, Gosud. uchebno-pedagogicheskoe izd-vo Narkomprosa RSFS, 1939
[4] R. L. Grekhem, D. E. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998
[5] Zadachi Arnolda, Fazis, M., 2000 | MR
[6] D. E. Knut, Iskusstvo programmirovaniya. T. 2. Poluchislennye algoritmy, M., Sankt-Peterburg, Kiev, Vilyams, 2000
[7] J. D. Dixon, “The Number of Steps in the Euclidean Algorithm”, J. of Number Theory, 2 (1970), 414–422 | DOI | MR | Zbl
[8] G. H. Hardy, E. M. Write, An Introduction to the Number Theory, Clarendon Press, Oxford, 1979 | Zbl
[9] H. Heilbronn, “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, VEB, Berlin, 1968, 89–96 | MR
[10] D. E. Knuth, “Evaluation of Porter's Constant”, Comput. Math. Appl., 2 (1976), 137–139 | DOI | MR | Zbl
[11] L. Lewin, Polylogaritms and associated functions, Elsevier North Holland, New York, 1981 | MR
[12] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl