On the statistical properties of finite continued fractions
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 186-211

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the statistical properties of continued fractions for the numbers $a/b$, for $a$ and $b$ in the sector $a,b\ge1$, $a^2+b^2\le R^2$. Main result is asymptotic formula with two meaning terms for the value $$ N_x(R)=\sum_{a^2+b^2\le R^2\atop a,b\in\mathbb{N}}s_x(a/b), $$ where $s_x(a/b)=|\{j\in\{1,\ldots,s\}:[0;t_j,\ldots,t_s]\le x\}|$ is Gaussian statistic for the fraction $a/b=[t_0;t_1,\ldots,t_s]$.
@article{ZNSL_2005_322_a12,
     author = {A. V. Ustinov},
     title = {On the statistical properties of finite continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--211},
     publisher = {mathdoc},
     volume = {322},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - On the statistical properties of finite continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 186
EP  - 211
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/
LA  - ru
ID  - ZNSL_2005_322_a12
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T On the statistical properties of finite continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 186-211
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/
%G ru
%F ZNSL_2005_322_a12
A. V. Ustinov. On the statistical properties of finite continued fractions. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 186-211. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a12/