On the index of the boundary points of four-dimensional lattices that are admissible for cube
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 176-185
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Gamma$ be a four-dimensional lattice  of general position that is admissible for a cube.  
Assume that this lattice contains at least one point that belongs to the boundary of this cube. We prove that the
index of the set of such points may be equal only to 0, 1, and 2.
			
            
            
            
          
        
      @article{ZNSL_2005_322_a11,
     author = {Yu. A. Smirnov},
     title = {On the index of the boundary points of four-dimensional lattices that are admissible for cube},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--185},
     publisher = {mathdoc},
     volume = {322},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a11/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Smirnov TI - On the index of the boundary points of four-dimensional lattices that are admissible for cube JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 176 EP - 185 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a11/ LA - ru ID - ZNSL_2005_322_a11 ER -
Yu. A. Smirnov. On the index of the boundary points of four-dimensional lattices that are admissible for cube. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 176-185. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a11/