On Waring's problem (elementary methods)
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 149-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with two elementary methods for solving Waring's problem on the representation of numbers as a sum of equal exponents in powers of natural numbers. The first method is an elementary version of the original Hilbert's proof, and the second one simplifies and makes more precise the elementary Linnik's proof based on the estimation of the number of solutions of a certain system of Diophantine equations.
@article{ZNSL_2005_322_a10,
     author = {Yu. V. Nesterenko},
     title = {On {Waring's} problem (elementary methods)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--175},
     year = {2005},
     volume = {322},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a10/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - On Waring's problem (elementary methods)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 149
EP  - 175
VL  - 322
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a10/
LA  - ru
ID  - ZNSL_2005_322_a10
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T On Waring's problem (elementary methods)
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 149-175
%V 322
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a10/
%G ru
%F ZNSL_2005_322_a10
Yu. V. Nesterenko. On Waring's problem (elementary methods). Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 149-175. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a10/

[1] B. M. Bredikhin, T. I. Grishina, “Elementarnaya otsenka $G(n)$ v probleme Varinga”, Matematicheskie zametki, 24:1, 7–18 | MR | Zbl

[2] B. M. Bredikhin, Yu. V. Linnik, “Novyi metod v analiticheskoi teorii chisel”, Aktualnye problemy analiticheskoi teorii chisel, Minsk, 1974, 5–22 ; Ю. В. Линник, Избранные труды. Теория чисел. $L$-функции и дисперсионный метод, Наука, Ленинград, 1980 | Zbl | MR

[3] A. O. Gelfond, Yu. V. Linnik, Elementarnye metody v analiticheskoi teorii chisel, gl. 2, Fizmatlit, M., 1962

[4] U. Dzhouns, V. Tron, Nepreryvnye drobi, Mir, M., 1985 | MR

[5] D. S. Kuznetsov, Spetsialnye funktsii, Vysshaya shkola, M., 1965 | MR

[6] Yu. V. Linnik, “Elementarnoe reshenie problemy Varinga po metodu Shnirelmana”, Mat. sb., 12:2 (1943), 225–230 ; Ю. В. Линник, “Теория чисел, Эргодический метод и $L$-функции”, Избранные труды, Наука, Ленинград, 1979, 297–303 | MR | Zbl | MR

[7] Yu. V. Linnik, “O razlozhenii bolshikh chisel na sem kubov”, Mat. sb., 12:2 (1943), 218–224 ; Ю. В. Линник, “Теория чисел, Эргодический метод и $L$-функции”, Избранные труды, Наука, Ленинград, 1979, 122–128 | MR | Zbl | MR

[8] Khua Lo-gen, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, gl. 1, Mir, M., 1964 | MR | Zbl

[9] L. G. Shnirelman, “Ob additivnykh svoistvakh chisel”, Izvestiya Donsk. politekhn. in-ta, 14:2–3 (1930), 3–28; “Über additive Eigenschaften von Zahlen”, Math. Ann., 107 (1933), 649–690 | DOI | MR

[10] L. E. Dickson, History of the theory of numbers, v. 2, Chelsea, New York, 1971

[11] G. Frobenius, “Über den Stridsbergschen Beweis des Waringschen Satzes”, Sitzungsber. Akad. Wiss. Berlin, 1912, 666–670 | Zbl

[12] F. Hausdorff, “Zur Hilbertschen Lözung des Waringschen Problems”, Math. Ann., 67 (1909), 301–305 | DOI | MR | Zbl

[13] D. Hilbert, “Beweis für Darstellbarkeit deer ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Warindsches Problem)”, Math. Ann., 67 (1909), 281–300 ; Izbrannye trudy, t. 1, Faktorial, Moskva, 1998, 312–328 | DOI | MR | Zbl

[14] Hua Loo Keng, Introduction to number theory, Springer, Berlin, 1982 | MR

[15] “Über die Darstellung der ganzen Zahlen als Summen von $n^{\text{ten}}$ Potenzen ganzer Zahlen”, Math. Ann., 65:3 (1908), 424–427 | DOI | MR | Zbl

[16] A. Hurwitz, “Über definite Polynome”, Math. Ann., 73 (1912), 173–176 | DOI | MR | Zbl

[17] R. Remak, “Bemerkung zu Herrn Stridsbergs Beweis des Waringschen Theorems”, Math. Ann., 72 (1912), 153–156 | DOI | MR | Zbl

[18] E. Stridsberg, “Sur la démonstration de M. Hilbert du théorème de Waring”, Math. Ann., 72:2 (1912), 145–152 | DOI | MR | Zbl

[19] G. L. Watson, “A proof of the seven cube theorem”, J. London Math. Soc., 26 (1951), 153–156 | DOI | MR | Zbl

[20] T. D. Wooley, “Large improvements in Waring's problem”, Ann. Math. (2), 135:1 (1992), 131–164 | DOI | MR | Zbl

[21] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Second edition, Cambridge University Press, 2005 | MR | Zbl