@article{ZNSL_2005_322_a1,
author = {V. I. Bernik and O. S. Kukso},
title = {Polynomials with small},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {10--16},
year = {2005},
volume = {322},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a1/}
}
V. I. Bernik; O. S. Kukso. Polynomials with small. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 10-16. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a1/
[1] K. Mahler, “Über das Mas der Menge aller $S$–Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR
[2] J. Koksma, “Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen”, Monatsh. Math. Phys., 48 (1939), 76–189 | DOI | MR
[3] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Math., 169, Cambridge Univ. Press, Cambridge, 2004 | MR
[4] E. Wirsing, “Approximation mit algebraischen Zahlen beschr änkten Grades”, J. Reine Angew. Math., 206 (1961), 67–77 | DOI | MR | Zbl
[5] V. Sprindzuk, Mahler's Problem in the Metric Theory of numbers, Transl. Math. Monographs, 25, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl
[6] A. Baker, “On a theorem of Sprindzuk”, Proc Roy. Soc. London Ser. A, 292 (1966), 92–104 | DOI | Zbl
[7] A. Khintchine, “Einige Sätze über Kettenbrüche mit Anwendungen auf die Theorie der Diophantischen Approzimationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR | Zbl
[8] V. I. Bernik, “About exact order of zero approximation by integer polynomials value”, Acta Arithmetica, 53:1 (1989), 17–28 | MR | Zbl
[9] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:3 (1999), 97–112 | MR | Zbl
[10] V. N. Borbat, “Sovmestnaya approksimatsiya nulya znacheniyami tselochislennykh mnogochlenov i ikh proizvodnykh”, Vestsi AN Belarusi, ser. fiz. mat. navuk, 1995, no. 1, 9–16 | MR | Zbl
[11] V. Bernik, D. Kleinbock, G. A. Margulies, “Khintchine type theorems on manifolds: the convergence case for standart and multiplicative version”, Int. Math. Res. Not., 9 (2001), 453–486 | DOI | MR | Zbl