Retract extensions of ordered sets
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 205-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Ideal extensions of ordered semigroups have been considered by Kehayopulu and Tsingelis in [9]. Ideal extensions of ordered sets have been considered by Kehayopulu in [10]. Equivalent extensions of ordered sets have been considered by Kehayopulu and Shum in [11]. In the present paper we introduce and study the concept of the retract extensions of ordered sets. There are given an example of an extension which is retract and an example of an extension which is not retract.
@article{ZNSL_2005_321_a9,
     author = {N. Kehayopulu and I. S. Ponizovskii and K.-P. Shum},
     title = {Retract extensions of ordered sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {205--212},
     year = {2005},
     volume = {321},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a9/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - I. S. Ponizovskii
AU  - K.-P. Shum
TI  - Retract extensions of ordered sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 205
EP  - 212
VL  - 321
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a9/
LA  - en
ID  - ZNSL_2005_321_a9
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A I. S. Ponizovskii
%A K.-P. Shum
%T Retract extensions of ordered sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 205-212
%V 321
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a9/
%G en
%F ZNSL_2005_321_a9
N. Kehayopulu; I. S. Ponizovskii; K.-P. Shum. Retract extensions of ordered sets. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 205-212. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a9/

[1] G. Birkhoff, Lattice Theory, 25, Amer. Math. Soc., Coll. Publ., Providence, RI, 1967 | MR | Zbl

[2] FR. T., Jr. Christoph, “Ideal extensions of topological semigroup”, Canad. J. Math., 22:6 (1970), 1168–1175 | DOI | MR | Zbl

[3] A. H. Clifford, “Extensions of semigroups”, Trans. Amer. Math. Soc., 68 (1950), 165–173 | DOI | MR

[4] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, V. 1, Math. Surveys, 7, Amer. Math. Soc., Providence, RI, 1977

[5] J. A. Hildebrant, “Ideal extensions of compact reductive semigroups”, Semigroup Forum, 25 (1982), 283–290 | DOI | MR | Zbl

[6] A. J. Hulin, “Extensions of ordered semigroups”, Semigroup Forum, 2 (1971), 336–342 | DOI | MR | Zbl

[7] A. J. Hulin, “Extensions of ordered semigroups”, Czech. Math. J., 26(101):1 (1976), 1–12 | MR | Zbl

[8] N. Kehayopulu, P. Kiriakuli, “The ideal extensions of lattices”, Simon Stevin, 64:1 (1990), 51–60 | MR | Zbl

[9] N. Kehayopulu, M. Tsingelis, “Ideal extensions of ordered semigroups”, Commun. Algebra, 31:10 (2003), 4939–4969 | DOI | MR | Zbl

[10] N. Kehayopulu, “Ideal extensions of ordered sets”, Int. J. Math. Sci., 53 (2004), 2847–2861 | DOI | MR | Zbl

[11] N. Kehayopulu, K. P. Shum, “Equivalent extensions of ordered sets”, Algebras, Groups and Geometries, 20:4 (2003), 387–402 | MR | Zbl

[12] M. Petrich, Introduction to Semigroups, Charles E. Merrill Publishing Company, Columbus, Ohio, 1973 | MR | Zbl