The Hasse conjecture for cyclic extensions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 197-204

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, embedding conditions for a quadratic extension of an algebraic number field into a cyclic 2-extension are presented. An example of an unsolvable embedding problem for which the compatibility condition is fulfilled is constructed.
@article{ZNSL_2005_321_a8,
     author = {V. V. Ishkhanov and B. B. Lur'e},
     title = {The {Hasse} conjecture for cyclic extensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {197--204},
     publisher = {mathdoc},
     volume = {321},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a8/}
}
TY  - JOUR
AU  - V. V. Ishkhanov
AU  - B. B. Lur'e
TI  - The Hasse conjecture for cyclic extensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 197
EP  - 204
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a8/
LA  - ru
ID  - ZNSL_2005_321_a8
ER  - 
%0 Journal Article
%A V. V. Ishkhanov
%A B. B. Lur'e
%T The Hasse conjecture for cyclic extensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 197-204
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a8/
%G ru
%F ZNSL_2005_321_a8
V. V. Ishkhanov; B. B. Lur'e. The Hasse conjecture for cyclic extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 197-204. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a8/