Generalized Artin–Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 183-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we consider the generalized Hilbert symbol in a higher local field of charactersitic 0 with the first residue field of characteristic 0 as well and with perfect last residue field of positive characteristic p which comes from higher local $p$-class field theory developed by I. Fesenko. Using the descent to a subfield of mixed characteristic we deduce from the generalized Artin–Hasse and Iwasawa formulas proved in a previous paper the corresponding Artin–Hasse and Iwasawa explicit reciprocity laws in the case under consideration.
@article{ZNSL_2005_321_a7,
     author = {A. N. Zinoviev},
     title = {Generalized {Artin{\textendash}Hasse} and {Iwasawa} formulas for the {Hilbert} symbol in a~higher local {field.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--196},
     year = {2005},
     volume = {321},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a7/}
}
TY  - JOUR
AU  - A. N. Zinoviev
TI  - Generalized Artin–Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 183
EP  - 196
VL  - 321
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a7/
LA  - ru
ID  - ZNSL_2005_321_a7
ER  - 
%0 Journal Article
%A A. N. Zinoviev
%T Generalized Artin–Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 183-196
%V 321
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a7/
%G ru
%F ZNSL_2005_321_a7
A. N. Zinoviev. Generalized Artin–Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 183-196. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a7/

[1] A. N. Zinovev, “Obobschennye formuly Artina-Khasse i Ivasavy dlya simvola Gilberta v mnogomernom polnom pole”, Zap. nauchn. semin. POMI, 289, 2002, 233–259 | MR

[2] S. V. Vostokov, “Sparivanie na $K$-gruppakh mnogomernykh polnykh polei”, Trudy S.-Peterb. mat. obsch., 3, 1995, 140–184 | MR | Zbl

[3] S. V. Vostokov, “Sparivanie Gilberta v polnom mnogomernom pole”, Trudy MIAN im. V. A. Steklova, 208, 1995, 80–92 | MR | Zbl

[4] I. B. Zhukov, A. I. Madunts, “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Trudy S.-Peterb. mat. obsch., 3, 1995, 4–46 | MR | Zbl

[5] I. B. Fesenko, “Sekventsialnye topologii i faktory milnorovskikh $K$-grupp mnogomernykh lokalnykh polei”, Algebra i analiz, 13:3 (2001), 198–221 | MR

[6] I. B. Fesenko, “Abelian local $p$-class field theory”, Math. Annal., 301 (1995), 561–586 | DOI | MR | Zbl