Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a~higher local field.~II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 183-196
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the generalized Hilbert symbol in a higher
local field of charactersitic 0 with the first residue field of
characteristic 0 as well and with perfect last residue field of positive
characteristic p which comes from higher local $p$-class field theory
developed by I. Fesenko. Using the descent to a subfield of mixed
characteristic we deduce from the generalized Artin–Hasse and Iwasawa
formulas proved in a previous paper the corresponding Artin–Hasse and
Iwasawa explicit reciprocity laws in the case under consideration.
@article{ZNSL_2005_321_a7,
author = {A. N. Zinoviev},
title = {Generalized {Artin--Hasse} and {Iwasawa} formulas for the {Hilbert} symbol in a~higher local {field.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--196},
publisher = {mathdoc},
volume = {321},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a7/}
}
TY - JOUR AU - A. N. Zinoviev TI - Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a~higher local field.~II JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 183 EP - 196 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a7/ LA - ru ID - ZNSL_2005_321_a7 ER -
A. N. Zinoviev. Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a~higher local field.~II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 183-196. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a7/