Products of conjugacy classes in perfect linear groups.
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 67-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we obtain estimates of extended covering numbers for some classes of perfect linear groups.
@article{ZNSL_2005_321_a3,
     author = {N. L. Gordeev},
     title = {Products of conjugacy classes in perfect linear groups.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--89},
     year = {2005},
     volume = {321},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a3/}
}
TY  - JOUR
AU  - N. L. Gordeev
TI  - Products of conjugacy classes in perfect linear groups.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 67
EP  - 89
VL  - 321
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a3/
LA  - en
ID  - ZNSL_2005_321_a3
ER  - 
%0 Journal Article
%A N. L. Gordeev
%T Products of conjugacy classes in perfect linear groups.
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 67-89
%V 321
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a3/
%G en
%F ZNSL_2005_321_a3
N. L. Gordeev. Products of conjugacy classes in perfect linear groups.. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 67-89. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a3/

[1] Z. Arad, M. Herzog, Products of conjugacy classes in groups, Lect. Notes in Math., 1112, Springer-Verlag, Berlin–New York, 1985 | MR | Zbl

[2] A. Borel, Linear algebraic groups, Second Enlarged Edition, Springer-Verlag, 1997 | MR | Zbl

[3] N. Bourbaki, Groupes et algèbres de Lie, IV, V, VI, Hermann, Paris, 1968 | MR

[4] J. L. Brenner, “Covering theorems for finasigs, X”, Ars Combinatoria, 16 (1983), 57–67 | MR | Zbl

[5] J. L. Brenner, R. J. List, “Application of partition theory to groups: Covering the alternating group by products of conjugacy classes”, Number Theory, eds. J. M. De Koninck, C. Levesque, Walter de Gruyter, Berlin, New York, 1989, 65–71 | MR

[6] R. W. Carter, Simple groups of Lie type, John Wiley Sons, London, 1989 | MR | Zbl

[7] Y. Dvir, “Covering properties in permutation groups”, Products of conjugacy classes in groups, Lecture Notes in Mathematics, 1112, Springer-Verlag, Berlin etc., 1985, 197–221 | MR

[8] E. W. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part in Chevalley groups”, Comm. Algebra, 22 (1994), 5935–5950 ; 23 (1995), 3085–3098 ; 24 (1996), 4447–4475 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[9] E. W. Ellers, N. Gordeev, M. Herzog, “Covering numbers for Chevalley groups”, Israel J. Math., 111 (1999), 339–372 | DOI | MR | Zbl

[10] N. Gordeev, “Products of conjugacy classes in algebraic groups, I, II”, J. Algebra, 173 (1995), 714–744, 745–779 | MR

[11] N. Gordeev, J. Saxl, “Products of conjugacy classes in Chevalley groups. I: Extended covering numbers”, Israel J. Math., 130 (2002), 207–248 | DOI | MR | Zbl

[12] N. Gordeev, J. Saxl “Products of conjugacy classes in Chevalley groups. II: Covering and generation”, Israel J. Math., 130 (2002), 248–258 | MR

[13] A. Lev, “Products of cyclic similarity classes in the groups $\mathrm{GL}_n(F)$”, Linear Algebra Appl., 202 (1994), 235–266 | DOI | MR | Zbl

[14] A. Lev, “The covering number of the group $\mathrm{PSL}_n(F)$”, J. Algebra, 182 (1996), 60–84 | DOI | MR | Zbl

[15] R. Lawther, M. Liebeck, “On the diameter of a Cayley graph of a simple group of Lie type based on a conjugacy class”, J. Combinatorical Theory, Ser. A, 83 (1998), 118–137 | DOI | MR | Zbl

[16] M. Liebeck, A. Shalev, “Diameters of finite simple groups: sharp bounds and applications”, Annals of Math., 154 (2001), 383–406 | DOI | MR | Zbl

[17] N. Nikolov, “On the commutator width of perfect groups”, Bull. London Math. Soc., 36:1 (2004), 30–36 | DOI | MR | Zbl

[18] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967 | MR

[19] I. Zisser, “The covering numbers of the sporadic simple groups”, Israel J. Math., 67 (1989), 217–224 | DOI | MR | Zbl