@article{ZNSL_2005_321_a16,
author = {E. A. Sopkina},
title = {Classitification of group subschemes in~$\operatorname{GL}_n$, that contain a~split maximal torus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {281--296},
year = {2005},
volume = {321},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a16/}
}
E. A. Sopkina. Classitification of group subschemes in $\operatorname{GL}_n$, that contain a split maximal torus. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 281-296. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a16/
[1] Z. I. Borevich, N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu diagonalnykh matrits”, Trudy MIAN SSSR, 148, 1978, 43–57 | MR | Zbl
[2] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Trudy Len. Mat. Obsch., 1, 1990, 64–109, 245–246 | MR
[3] N. A. Vavilov, “Razlozhenie Bryua podgrupp, soderzhaschikh gruppu diagonalnykh matrits, II”, Zap. nauchn. semin. LOMI, 114, 1982, 50–61 | MR | Zbl
[4] A. Borel, J. Tits, “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math., 27, 1965, 55–151 | MR
[5] F. Knop, “Homogeneous varieties for semisimple groups of rank one”, Compos. Math., 98 (1995), 77–89 | MR | Zbl
[6] N. Vavilov, “Intermediate Subgroups in Chevalley Groups”, London Math. Soc. Lect. Note Ser., 207, 1993, 233–281 | MR
[7] W. C. Waterhouse, Introduction to affine group schemes, Springer, New York, 1979 | MR
[8] C. Wenzel, “Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraiclly closed field”, Trans. Amer. Math. Soc., 337 (1993), 211–218 | DOI | MR | Zbl
[9] C. Wenzel, “Rationality of $G/P$ for a nonreduced parabolic subgroup-scheme $P$”, Proc. Amer. Math. Soc., 117 (1993), 899–904 | DOI | MR | Zbl