Classitification of group subschemes in~$\operatorname{GL}_n$, that contain a~split maximal torus
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 281-296
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe group subschemes of $\operatorname{GL}_n$ over an arbitrary field,
that contain a split maximal torus. This is a joint generalization of the
papers by Z. I. Borewicz, G. M. Seitz, N. A. Vavilov and others
on description of overgroups of maximal torus
and the works by Ch. Wenzel on parabolic subschemes.
@article{ZNSL_2005_321_a16,
author = {E. A. Sopkina},
title = {Classitification of group subschemes in~$\operatorname{GL}_n$, that contain a~split maximal torus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {281--296},
publisher = {mathdoc},
volume = {321},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a16/}
}
TY - JOUR
AU - E. A. Sopkina
TI - Classitification of group subschemes in~$\operatorname{GL}_n$, that contain a~split maximal torus
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2005
SP - 281
EP - 296
VL - 321
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a16/
LA - ru
ID - ZNSL_2005_321_a16
ER -
E. A. Sopkina. Classitification of group subschemes in~$\operatorname{GL}_n$, that contain a~split maximal torus. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 281-296. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a16/