On the Galois spectra of polynomials with integral parameters
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 275-280
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that there exists a polynomial $F(x,t)$ with rational coefficients whose degree with respect to $x$ is equal to 4, such that for every integer the Galois group of the decomposition field of the polynomial $F(x,a)$ is not the dihedral group, but any other transitive subgroup of the group $S_4$ can be represented as the
Galois group of the decomposition field of the polynomial $F(x,a)$ for some integer $a$.
@article{ZNSL_2005_321_a15,
author = {A. \`E. Sergeev and A. V. Yakovlev},
title = {On the {Galois} spectra of polynomials with integral parameters},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {275--280},
publisher = {mathdoc},
volume = {321},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/}
}
A. È. Sergeev; A. V. Yakovlev. On the Galois spectra of polynomials with integral parameters. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 275-280. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/