On the Galois spectra of polynomials with integral parameters
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 275-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that there exists a polynomial $F(x,t)$ with rational coefficients whose degree with respect to $x$ is equal to 4, such that for every integer the Galois group of the decomposition field of the polynomial $F(x,a)$ is not the dihedral group, but any other transitive subgroup of the group $S_4$ can be represented as the Galois group of the decomposition field of the polynomial $F(x,a)$ for some integer $a$.
@article{ZNSL_2005_321_a15,
     author = {A. \`E. Sergeev and A. V. Yakovlev},
     title = {On the {Galois} spectra of polynomials with integral parameters},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {275--280},
     year = {2005},
     volume = {321},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/}
}
TY  - JOUR
AU  - A. È. Sergeev
AU  - A. V. Yakovlev
TI  - On the Galois spectra of polynomials with integral parameters
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 275
EP  - 280
VL  - 321
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/
LA  - ru
ID  - ZNSL_2005_321_a15
ER  - 
%0 Journal Article
%A A. È. Sergeev
%A A. V. Yakovlev
%T On the Galois spectra of polynomials with integral parameters
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 275-280
%V 321
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/
%G ru
%F ZNSL_2005_321_a15
A. È. Sergeev; A. V. Yakovlev. On the Galois spectra of polynomials with integral parameters. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 275-280. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/

[1] A. E. Sergeev, Obratnaya zadacha dlya spektrov polinomov, Dep. v VINITI, No 881-V2004, 1–35