On the Galois spectra of polynomials with integral parameters
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 275-280
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that there exists a polynomial $F(x,t)$ with rational coefficients whose degree with respect to $x$ is equal to 4, such that for every integer the Galois group of the decomposition field of the polynomial $F(x,a)$ is not the dihedral group, but any other transitive subgroup of the group $S_4$ can be represented as the Galois group of the decomposition field of the polynomial $F(x,a)$ for some integer $a$.
@article{ZNSL_2005_321_a15,
author = {A. \`E. Sergeev and A. V. Yakovlev},
title = {On the {Galois} spectra of polynomials with integral parameters},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {275--280},
year = {2005},
volume = {321},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/}
}
A. È. Sergeev; A. V. Yakovlev. On the Galois spectra of polynomials with integral parameters. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 275-280. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a15/
[1] A. E. Sergeev, Obratnaya zadacha dlya spektrov polinomov, Dep. v VINITI, No 881-V2004, 1–35