@article{ZNSL_2005_321_a14,
author = {I. S. Rakhimov},
title = {On the degenerations of finite dimensional nilpotent complex {Leibniz} algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {268--274},
year = {2005},
volume = {321},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a14/}
}
I. S. Rakhimov. On the degenerations of finite dimensional nilpotent complex Leibniz algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 268-274. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a14/
[1] P. Gabriel, “Finite representation type is open”, Proceedings of ICRA, I (Ottawa, 1974), Lect. Notes Math., 488, Springer-Verlag, 1975, 132–155 | MR
[2] G. Mazzola, “The algebraic and geometric classification of associative algebras of dimension five”, Manuscripta Math., 27 (1979), 1–21 | DOI | MR
[3] F. Grunewald, J. O'Halloran, “Varieties of nilpotent Lie algebras of dimension less than six”, J. Algebra, 112:2 (1988), 315–326 | DOI | MR
[4] D. Burde, C. Steinhoff, “Classification of orbit closures of $4$-dimensional complex Lie algebras”, J. Algebra, 214 (1999), 729–739 | DOI | MR | Zbl
[5] M. Goze M., J. M. Ancochea Bermudez, “On the varieties of nilpotent Lie algebras of dimension $7$ and $8$”, J. Pure Appl. Algebra, 77 (1992), 131–140 | DOI | MR | Zbl
[6] J.-L. Loday, “Une version non commutative des alg$\grave{e}$bres de Lie: les alg$\grave{e}$bres de Leibniz”, Ens. Math., 39 (1993), 269–293 | MR | Zbl
[7] Sh. A. Ayupov, B. A. Omirov, “On some classes of nilpotent Leibniz algebras”, Siberian Math. J., 42:1 (2001), 18–29 | DOI | MR | Zbl