Subgroups of the orthogonal groups of even degree over a~local field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 240-250

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the description of subgroups of orthogonal linear groups $\operatorname{SO}(2l,K)$ and $\operatorname{GO}(2l,K)$ over the field of fractions $K$ of a local principal ideal domain $R$ containing the maximal split tori $T=T(2l,R)$ with entries from $R$. Similar result for overgroups $T$ in case of semilocal ring and field was obtained earlier by N. Vavilov. Result of the present paper generalizes also some known results.
@article{ZNSL_2005_321_a12,
     author = {K. Yu. Lavrov},
     title = {Subgroups of the orthogonal groups of even degree over a~local field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {240--250},
     publisher = {mathdoc},
     volume = {321},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a12/}
}
TY  - JOUR
AU  - K. Yu. Lavrov
TI  - Subgroups of the orthogonal groups of even degree over a~local field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 240
EP  - 250
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a12/
LA  - ru
ID  - ZNSL_2005_321_a12
ER  - 
%0 Journal Article
%A K. Yu. Lavrov
%T Subgroups of the orthogonal groups of even degree over a~local field
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 240-250
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a12/
%G ru
%F ZNSL_2005_321_a12
K. Yu. Lavrov. Subgroups of the orthogonal groups of even degree over a~local field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 240-250. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a12/