On same-invariant linear groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 224-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear group $G\le\operatorname{GL}(V)$ is called same-invariant if the subspaces of linear invariants $V^g$ are the same for all $g\in G$, $g\ne 1$. In this paper, we consider finite same-invariant linear groups over а field of characteristic $p$ which have order $p^2$ or $pq$, $(p,q)=1$.
@article{ZNSL_2005_321_a11,
     author = {N. N. Kushpel},
     title = {On same-invariant linear groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {224--239},
     year = {2005},
     volume = {321},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/}
}
TY  - JOUR
AU  - N. N. Kushpel
TI  - On same-invariant linear groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 224
EP  - 239
VL  - 321
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/
LA  - ru
ID  - ZNSL_2005_321_a11
ER  - 
%0 Journal Article
%A N. N. Kushpel
%T On same-invariant linear groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 224-239
%V 321
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/
%G ru
%F ZNSL_2005_321_a11
N. N. Kushpel. On same-invariant linear groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 224-239. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/

[1] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, M., 1969 | MR

[2] R. Guralnick, R. Wiegand, “Galois groups and the multiplicative structure of field extensions”, Trans. Amer. Math. Soc., 331:2 (1992), 563–584 | DOI | MR | Zbl

[3] P. Fleischmann, W. Lempken, P. H. Tiep, “The $p$-intersection subgroups in quasi-simple and almost simple finite groups”, J. Algebra, 207:1 (1998), 1–42 | DOI | MR | Zbl

[4] P. Fleischmann, W. Lempken, P. H. Tiep, “The primitive $p$-Frobenius groups”, Proc. Amer. Math. Soc., 126:5 (1998), 1337–1343 | DOI | MR | Zbl

[5] T. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, 9, Boston, 1998 | MR | Zbl

[6] Dzh. Volf, Prostranstvo postoyannoi krivizny, Nauka, M., 1982 | MR

[7] N. Gordeev, N. Kushpel, “On same-invariant linear groups”, Zap. nauchn. semin. POMI, 289, 2002, 134–148 | MR | Zbl

[8] F. Gantmakher, Teoriya matrits, Nauka, Moskva, 1967 | MR