On same-invariant linear groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 224-239

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear group $G\le\operatorname{GL}(V)$ is called same-invariant if the subspaces of linear invariants $V^g$ are the same for all $g\in G$, $g\ne 1$. In this paper, we consider finite same-invariant linear groups over а field of characteristic $p$ which have order $p^2$ or $pq$, $(p,q)=1$.
@article{ZNSL_2005_321_a11,
     author = {N. N. Kushpel},
     title = {On same-invariant linear groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {224--239},
     publisher = {mathdoc},
     volume = {321},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/}
}
TY  - JOUR
AU  - N. N. Kushpel
TI  - On same-invariant linear groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 224
EP  - 239
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/
LA  - ru
ID  - ZNSL_2005_321_a11
ER  - 
%0 Journal Article
%A N. N. Kushpel
%T On same-invariant linear groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 224-239
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/
%G ru
%F ZNSL_2005_321_a11
N. N. Kushpel. On same-invariant linear groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 224-239. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a11/