Bimodule resolution of the Liu–Schulz algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 213-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The minimal projective bimodule resolution of the symmetric 8-dimensional algebras discovered by Liu and Schulz is constructed.
@article{ZNSL_2005_321_a10,
     author = {N. Yu. Kosovskaya},
     title = {Bimodule resolution of the {Liu{\textendash}Schulz} algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--223},
     year = {2005},
     volume = {321},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a10/}
}
TY  - JOUR
AU  - N. Yu. Kosovskaya
TI  - Bimodule resolution of the Liu–Schulz algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 213
EP  - 223
VL  - 321
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a10/
LA  - ru
ID  - ZNSL_2005_321_a10
ER  - 
%0 Journal Article
%A N. Yu. Kosovskaya
%T Bimodule resolution of the Liu–Schulz algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 213-223
%V 321
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a10/
%G ru
%F ZNSL_2005_321_a10
N. Yu. Kosovskaya. Bimodule resolution of the Liu–Schulz algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 213-223. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a10/

[1] Sh. Liu, R. Schulz, “The existence of bounded infinite $DTr$-orbits”, Proc. Amer. Math. Soc., 122:4 (1994), 1003–1005 | DOI | MR | Zbl

[2] C. M. Ringel, “The Liu–Schulz example”, Representation Theory of Algebras, CMS Conf. Soc., 18, Providence, RI, 1996, 587–600 | MR | Zbl

[3] A. I. Generalov, N. Yu. Fedorova, “Algebra Ionedy dlya “primera Lyu–Shultsa””, Algebra i analiz, 14:4 (2002), 19–35 | MR | Zbl

[4] D. J. Benson, J. F. Carlson, “Complexity and multiple complexes”, Math. Z., 195 (1987), 221–238 | DOI | MR | Zbl