Bimodule resolution of the Liu–Schulz algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 213-223
Cet article a éte moissonné depuis la source Math-Net.Ru
The minimal projective bimodule resolution of the symmetric 8-dimensional algebras discovered by Liu and Schulz is constructed.
@article{ZNSL_2005_321_a10,
author = {N. Yu. Kosovskaya},
title = {Bimodule resolution of the {Liu{\textendash}Schulz} algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {213--223},
year = {2005},
volume = {321},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a10/}
}
N. Yu. Kosovskaya. Bimodule resolution of the Liu–Schulz algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 12, Tome 321 (2005), pp. 213-223. http://geodesic.mathdoc.fr/item/ZNSL_2005_321_a10/
[1] Sh. Liu, R. Schulz, “The existence of bounded infinite $DTr$-orbits”, Proc. Amer. Math. Soc., 122:4 (1994), 1003–1005 | DOI | MR | Zbl
[2] C. M. Ringel, “The Liu–Schulz example”, Representation Theory of Algebras, CMS Conf. Soc., 18, Providence, RI, 1996, 587–600 | MR | Zbl
[3] A. I. Generalov, N. Yu. Fedorova, “Algebra Ionedy dlya “primera Lyu–Shultsa””, Algebra i analiz, 14:4 (2002), 19–35 | MR | Zbl
[4] D. J. Benson, J. F. Carlson, “Complexity and multiple complexes”, Math. Z., 195 (1987), 221–238 | DOI | MR | Zbl