Minimax detection of signal in weighted Gaussian white noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 54-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of signal detection in weighted Gaussian white noise where the set of alternatives is essentially nonparametric. In this setting we find the family of asymptotically minimax tests. The results are extended on the case of tested parametric hypothesis versus nonparametric sets of alternatives.
@article{ZNSL_2004_320_a3,
     author = {M. S. Ermakov},
     title = {Minimax detection of signal in weighted {Gaussian} white noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--68},
     publisher = {mathdoc},
     volume = {320},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a3/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Minimax detection of signal in weighted Gaussian white noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 54
EP  - 68
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a3/
LA  - ru
ID  - ZNSL_2004_320_a3
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Minimax detection of signal in weighted Gaussian white noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 54-68
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a3/
%G ru
%F ZNSL_2004_320_a3
M. S. Ermakov. Minimax detection of signal in weighted Gaussian white noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 54-68. http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a3/